締切済み 解答お願いします 2012/02/02 21:18 m,nは整数とする。 対偶を利用して次の命題を証明せよ。 積mnが9の倍数でないならばmまたはnは3の倍数でない。 みんなの回答 (2) 専門家の回答 みんなの回答 sphenis ベストアンサー率50% (50/100) 2012/02/02 23:20 回答No.2 ヒントです。 『mまたはnは3の倍数でない』と言う事は、『mとnの少なくともどちらか一方は3の倍数でない』、すなわち『mとnが両方3の倍数であることはない』と言う事です。 通報する ありがとう 0 広告を見て他の回答を表示する(1) asuncion ベストアンサー率33% (2127/6289) 2012/02/02 21:24 回答No.1 当該の命題の対偶がどうなるか、わかりますか? 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 宿題が分からないので教えて下さい(;_;) a、bは実数とする。対偶を利用して次の命題を証明せよ。 (1) a+b=>a≦2またはb≦3 (2) a+b≠4またはa-b≠2=>a≠3またはb≠1 M、Nは整数とする。対偶を利用して、次の命題を証明せよ。 M^2+N^2は奇数=>MNは偶数 お願いします。 教えてください!! 数学の問題です。分からない問題があるので教えてください。 「m,nは整数とする。対偶を利用して、次の命題を証明せよ。」という問題で、 [nの3乗+2n+1が偶数ならば、nは奇数である。]の証明をお願いしますm(_ _)m 証明問題ですが次の方法でいいでしょうか abが3の倍数であるとき、aまたはbは3の倍数であることを示せ [考えた答え] もとの命題に対する対偶は等しいので a,bともに3の倍数でないならば abが3の倍数でないならばabが3の倍数でないことを示す a,bはともに正の整数もm,nを用いて a=3m+1 b=3n+2と表せる。 ゆえに ab=(3m+1)(3n+2)=3(3mn+2n+1)+2 ゆえにabは3の倍数ではない ゆえにもとの命題も成立 答えがとうかと、ほかにもっといい方法はないか よろしくお願いします。 数学です。 実数Xについての次の命題の 真偽を、集合を使って 調べなさい。 (1)x<3⇒x<-1 (2)x>2⇒x>-2 次の条件の否定を答えなさい。 (1)実数xについて[x≧-1] (2)自然数nについて [nは奇数である] 実数xについて次の命題の 逆を示し、その真偽を 調べなさい。 (1)x=3⇒xの2乗=9 (2)x>-4⇒x>-2 自然数nについての命題 「nの2乗は3の倍数でない ⇒nは3の倍数でない」に ついて、次の問いに 答えなさい。 (1)この命題の対偶を 答えなさい。 (2)対偶を利用して、 もとの命題が真である ことを証明しなさい。 解らなくて困ってます nが整数のとき、n^2が素数aの倍数ならばnはaの倍数である、は真ですか? 数学の問題を解いていると、nが整数のとき、 n^2が3の倍数⇔nは3の倍数 を証明せよ n^2が5の倍数⇔nは5の倍数 を証明せよ という問題がありました。 そこで、質問タイトルにあるように、 「n^2が素数aの倍数⇔nはaの倍数」 は成り立つかな?と思って証明しようと思い、 必要は明らかなので十分について 対偶を取って数学的帰納法で証明しようとしたのですが、うまくいきませんでした。 そもそもこの命題は真なのでしょうか。真なのでしたら、 出来るならば高校数学の範囲で証明を示してもらえないでしょうか。 高1数学 命題の証明 「整数aの平方aの2乗が3の倍数ならば、aは3の倍数であることを証明せよ。」 という問題が教科書に載ってたんですが解答をみると、この命題の対偶を使って証明しています。 この証明を対偶を使わずに証明するとどうなりますか? 疑問に思ったので分かる方いましたら、教えてください☆ 数Aの命題、条件と集合 こんばんわ、命題のところでわからないところがあったので教えてください x,yは実数、mnは整数。次の( )に (ア)必要条件 (イ)十分条件 (ウ)必要十分条件 (エ)必要条件でも十分条件でもない を選んでください。 (問)m,nがおもに3の倍数であることは、席mnが3の倍数であるための( )。 よろしくお願いしますm(_)m 倍数の証明問題 m、nを1より大きい異なる整数とする時、m^3*n-m*n^3は6の倍数であることを証明せよ. m^3*n-m*n^3 =mn(m+n)(m-n) 6の倍数なので、三つの連続する整数であることを使うのかと思ったのですが、ちょっと出来そうにありません。 この問題はどうやって証明するのでしょうか? よろしくお願いしますm(__)m 証明 m,nが整数のとき、次の命題を背理法を用いて証明せよ。 (1)mnが偶数ならば、m、nのうち少なくとも一つは偶数である。 (2)m^2+n^2が偶数ならば、m+nは偶数である。 背理法の使い方がよくわかっていません。どのような流れで証明すればよいのか教えてください。 よろしくお願いします。 集合と論証 教えてください。 1. nが自然数のとき、命題「n2乗は偶数→nは偶数」が真であることを証明する。次の問いに答えなさい。 (1)この対偶をつくりなさい。 対偶「 → 」 (2)(1)でつくった対偶を利用して、もとの命題が真であることを証明しなさい。 [証明]nを正の( )とすると、mを( )として n= ( )と表すことができる。 このときn2乗=( )2乗=( )=2( )+1 ( )は( )であるから、n2乗は( )である。 したがって( )が( )であることが( )されたので、もとの命題も( )である。 2. √2-1が無理数であることを√2が無理数であることを用いて、背理法で証明しなさい。 [証明]√2-1が( )ではないと仮定する。 このとき√2-1は( )である。 a= ( )としてこの式を変形すると√2=( ) となる。 ここでa,1はともに( )であるから ( )も( )である。よって√2も( )となり √2が( )であることに( )する。 したがって√2-1は ( )ではないとした仮定が( )であり√2-1は( )であることが証明された。 集合と論証 全くわかりません。教えてください。 1 次の命題の逆をつくり、その真偽を調べなさい。 (1)nが自然数のとき nは10の倍数→nは5の倍数 逆「nが自然数のとき → 」 真偽: (2)x=6→4x=24 逆「 → 」 真偽: (3)-1<x<3→-4<x<5 逆「 → 」 真偽: (4)x=3→x2乗=9 逆「 → 」 真偽: 2 次の命題の対偶をつくりなさい。 (1)x2乗≠25→x≠-5 対偶「 → 」 (2)x<-2→x<0 対偶「 → 」 (3)nは4の倍数→nは2の倍数 対偶「 → 」 数学「集合と論理」の問題が分からないです。 m、nを整数とします。次の命題の対偶をつくってください。また、その真偽を調べてください。 (1)m^2+n^2が奇数ならば、m、nの少なくとも一方は偶数である。 よろしくお願いします。 数学I 命題の証明問題 問題:nは整数とする。次の命題を証明せよ。 n^2が3の倍数ならば、nは3の倍数である。 宿題なのですが、答えが省略されていてわかりません💦 どなたかご教授くださいm(__)m 対偶を証明する目的 命題を証明するとき、もとの命題ではなく、対偶を証明するときはありますよね。 例えば3の倍数の2乗は3の倍数になる。 これの証明をしているものは、これの対偶を証明しています。 でも、別にそのままでも証明できますよね。 この問題では、もとの命題のまま証明するとダメなのでしょうか? 回答よろしくお願いします。 解答お願いします a、bは実数とする。 対偶を利用して次の命題を証明せよ。 (1)a+b≦5⇒a≦2またはb≦3 (2)a+b≠4またはa-b≠2⇒a≠3またはb≠1 論証 証明の仕方 命題 m+n,mnが共に偶数ならばm,nは共に偶数である が真であることの証明法を質問します。 逆の命題はm=2k,n=2l(k,lはともに整数)とおいてm+n=2(k+l),mn=2×2klで証明終でしたが,上記のも直接証明できませんか?(lは小文字のエル) 対偶で m,nの少なくとも片方が奇数ならばm+n,mnの少なくとも片方は奇数である は 1)mが偶数m=2k,nが奇数k=2l-1(mnは偶数だがm+nは2k+2l-1となるので奇数) 2)m,n共に奇数 m=2k-1,l=2l-1(m+nは偶数だがmnは4kl-2k-2l+1となるので奇数) 3)mが奇数m=2k-1,nが偶数n=2l(1)と同様) としてそれぞれm+n,mnを示せばよいのでしょうが,そうではない方法でお願いします。 m+n=2k,mn=2lとおいてnを消去したらmの2次式となってしまい,解の公式で解いたら m=l±√ となり,偶数であることを示せませんでした。 命題の証明で・・・ mnが奇数ならば、m、nはともに奇数である という命題の対偶は mまたはnが偶数ならば、mnは偶数である というのは合ってますか? また、「mまたはnが偶数」というのと「m、nの少なく とも一方が偶数」というのはどう違うのでしょうか? 命題 n^2が偶数ならば、nは偶数である nは整数とします この命題が真であることを対偶と背理方を使わずに証明せよ 命題 n^2が偶数ならば、nは偶数である どなたかご教授願います 【mn=pl(lは整数)】 【mn=pl(lは整数)】 (mnが素数pの倍数であるとき、mまたはnはpの倍数) なぜ、mまたはn なのですか? mかつn ではないですか? aはpの倍数だけど、bはpの倍数じゃないときがあるんですか? お願いします x、yは実数 m、nは整数とするとき、次の命題について、真であるものはどれか。 また、命題の逆が義であるものはどれか。 (A) 絶対値x<1 ならば x^2<1 (B)mが4の倍数ならばmは2の倍数 この問題の解答をお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど