締切済み 積分の問題がまたわかりません! 2012/01/21 16:28 ∫<π/2→0>sin^9x cosx dx という問題で、答えが1/10と分かっているのですが途中式が分かりません!教えてくださいお願いします! みんなの回答 (2) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2012/01/21 18:33 回答No.2 u = sin x で置換積分すれば、 du = (cos x)dx ですから、 与式 = ∫〈1→0〉(uの9乗)du = [ (1/10)(uの10乗) ]〈u=1から0まで〉 = (1/10)(0の10乗) - (1/10)(1の10乗) = -1/10 となります。 答えが違っているようですね。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22_ ベストアンサー率67% (2650/3922) 2012/01/21 16:59 回答No.1 積分公式 ∫f(g(x))g'(x)dx=F(g(x))+C, ただし、F(t)=∫f(t)dt がそっくり使える形の積分です。 (積分の上限、下限の書き方が通常と逆ですので訂正して書きます) I=∫[0→π/2] sin^9(x)cos(x) dx =∫[0→π/2] sin^9(x)(sin(x))' dx =[sin^10(x)/10] [0→π/2] ={(1^10) -(0^10)}/10 =1/10 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 積分の問題です。 テスト勉強中なのですが、解き方、考え方が分からないので教えてください。 ∫(Sin^-1 x)dx が分かりません。 (↑アークサインです) 解答には x(Sin^-1 x)+√(1-x^2) と書いてありますが、 途中式が載ってないです。 答えを微分したら確かに問題文の式と一致しました。 この問題の解き方を教えてください、お願いします。 数III 積分 (1) ∫(sinx)^4dx (2) ∫dx/sin3x (3) ∫dx/(cosx)^3 途中式を含めて教えてください。 絶対値つきの定積分の問題 ∫|sin x|dx 範囲は[-π,π] =2∫|sin x|dx 範囲は[0,π] ←範囲が[-π,π]で、|sin x|は偶関数なので。 =2∫(sin x)dx + 2∫(sin x)dx 範囲は[0,?]と[?,π] =... 範囲が分かりません。 絶対値がある場合の積分の計算は、場合分けをすると思うのですが その場合分けの考え方が分かりません。 答えは「4」と分かっているんですが、途中式がないため答えまでたどり着きません。 「場合分けの考え方」と「途中式」の説明をお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 積分の問題です。先ほども質問させてもらいましたが、 積分の問題です。先ほども質問させてもらいましたが、 自分なりに解いた答えと、皆さんの答えが違っていました。 どこが違うのか、考え方が違うのか教えてください。 ※パソコンでの書き方が慣れていないため、かっこの付け方や 途中式で見ずらいものがあると思います。お許しください。 次の定積分を求めよ。 (1)∫(0~π/2)sin^2xcos^3xdx =∫(0~π/2)sin^2(1-sin^2)cosxdx =∫(0~π/2)(sin^2-sin^4)cosxdx =∫(0~π/2)sin^2(cosx)-sin^4(cosx)dx =[(1/3)sin^3x-(1/5)sin^5x](0~π/2) =(1/3-1/5)-0 =2/15 (2)∫(0~1)xtan^-1xdx t=tan^-1xとおくとx:0→1のときt:0→π/4 x=tant dx=1/(cos^2t)dt ∫(0~1)xtan^-1xdx =∫(0~π/4)tant/cos^2tdt =∫(0~π/4)(sint/cost)(1/cos^2t)dt =∫(0~π/4)sint/cos^3tdt =∫(0~π/4)(cos^-3t)(sint)dt =[(1/2)cos^-2(t)](0~π/4) =(1/2)(1/(1/√2)^2)-(1/2)(1/(1^2) =1-(1/2)=1/2 と解きました。長くなりましたが、よろしくお願いします。 積分問題 A=∫[0→π/2](sin^3x)/(sinx+cosx)dx B=∫[0→π/2](cos^3x)/(sinx+cosx)dx (1)A+Bを計算せよ。 (2)AとBが等しいことを示せ。 (3)Aの値を求めよ。 (1)A+B=∫[0→π/2]{(sin^3x)+(cos^3x)}/(sinx+cosx)dx =∫[0→π/2](1+sinx+cosx)/(sinx+cosx)dx =∫[0→π/2][{1/(sinx+cosx)}+1]dx =∫[0→π/2][{1/√2sin(x+π/4)}+1]dx =[0→π/2][1/{√2log tan(x/2-π/8)}+1]dx =1/{√2log tan(π/8)} + π/2 - 1/{√2log tan(-π/8)} =(2/√2)log tan(π/8) + π/2 になったのですがこのような方法でよろしいのでしょうか? (2)に関しては、どのようにして行ってよいのかわかりません。 (3)もどうようにわかりません。 教えて頂けないでしょうか? よろしくお願い致します。 積分 (1) ∫ sin^3 x cosx dx (2) ∫ sin^3 x dx 積分した後答えを微分もお願いします。 積分の問題です。教えてください。 積分の問題です。教えてください。 ∫(x+2)e^(x^2+4x)dx ∫(cos^3xsinx+sin^2xcosx)dx ∫x^2(cosx+e^x)dx よろしくお願いします。 積分 こんばんは。 次の積分の問題の解き方の流れがわかりません。 ∫(sin2x・cosx)dx まずsin2xを2sinx・cosxにして解いてみたのですがsinx^3が出てきて計算が複雑になったためか、答えが解答と一致しません。 また、解答にはヒントとして、sin2xcosx=1/2(sin3x+sinx)が書いてあったのですが、これはどのようにして出されたのでしょうか? よろしくお願いします。 部分積分法で定積分を求めたいのですが~ 問題集を解いていますが、3つ分からない問題がありました。 部分積分法で求めた時の途中式~答えまでの流れを教えてください。 お手数ですが、宜しくお願いします。 (1) ∫(0→π/2) x cos2x dx (2) ∫(0→π/4) x^(2) sin2x dx (3) ∫(0→2π) e^(x) cos x dx 答え (1) -1/2 (2) π/8 - 1/4 (3) { e^(2π)-1 } / 2 【定積分】全9問解き方教えて下さい※1問のみでも可 定積分の問題が解き方がわかりません。 教科書には答えだけがのっており、 数学が苦手な私は全然解き方が思いつきません。 【∫↑ ~ ∫↓】…定積分の範囲 (1) 【2π~0】 ∫cos^2x sin^2x dx 答え π/4 (2)【π/2~0】 ∫sin^4x dx 答え 3π/16 (3)【π~0】 ∫x^2 sin^2 dx 答え π(2π^2 -3)/12 (4)【π~0】 ∫√(1+cosx) dx 答え 2√2 (5)【2~0】 ∫x^2√(2x-x^2) dx 答え 5π/8 (6)【π/2~0】 ∫1/(4+5sinx) dx 答え log2/3 (7)【π/4~0】 ∫1/(1+2sin^2x) dx 答え π/3√3 (8)【2~1】 ∫1/√(x^2 -1) dx 答え log(2+√3) (9)【2~0】 ∫1/√(x(2-x)) dx 答え π 答えは解くときの参考にしてもらえたらと思います。 全部は解けないけど何問かはわかる、という方も 解答をお願いします。 初めての質問で至らない点もあるかと思いますが よろしくお願いします。 数III 定積分 x ∫│cosx│dx 0 と言う問題で、 0≦x≦π/2のとき、│cosx│=cosx π/2≦x≦πのとき、│cosx│=-cosx であるから、 π/2 x (与式)=∫cosxdx+∫(-cosx)dx 0 π/2 π/2 π =[ sinx ]ー[ sinx ]=2 0 π/2 ---------------------------------------------- と、いう問題なのですが、 0≦x≦π/2のとき、│cosx│=cosx π/2≦x≦πのとき、│cosx│=-cosx であるから、 というところが全くわかりません;; 何故範囲を決めるのか、 何故 x ∫│cosx│dx 0 という式が π/2 x (与式)=∫cosxdx+∫(-cosx)dx 0 π/2 のように、xがπ/2になって、0がπ/2になったりするのでしょうか?;; まったく意味がわかりません; どなたか詳しく教えてください!;; 定積分について 定積分について 問題:∫(cosx)^6dx 積分区間は0→2πです。 (cosx)^2が(1-sin^2x)であることなどを利用したり、他の式変形もしてみたのですが、うまくいきませんでした。 方針はどういうものでしょうか? 分かる方、お力を貸してください。 宜しくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数III 積分教えてください (1)∫√(cosx^2 +1)sin2x dx (2)∫log{x+√(x^2+1)}dx 式変形が分かりません。 教えてください。 積分の基本問題なのですが・・・ 積分の基本問題なのですが・・・ π∫<0→2π/3>{cos (x/2)}^2 dx -π∫<0→π/2>{cosx}^2 dx +π∫<2π/3→π>{cosx}^2 dxを求めよ。 上記の問題の解法がわかりません!! 積分を習っている所なので、途中経過も書いていただければ助かります(*_*) 不定積分について 解けない問題がありました。途中計算がどのようななっているのかが知りたいです。宜しくお願いします。 (1)∫(x+2/√x)dx (2)∫(3-tan x)cos x dx (3)∫(1/{tna^(2) (x)) }dx (4)∫cos(7-3x/2)dx (5) ∫1/{cos^(2) (7x+5) }dx 答え (1)2/3 (x√x)+(4√x) +C (2)3sinx+cosx+C (3)-cotx-x+C (4)-2/3 sin(7-3x/2)+C (5)1/7 tan(7x+5)+C 積分 問題 積分 問題 ∫(1/cos^3x)dxについて、テキストの回答が理解できません・・・ ∫(cosx/cos^4x)dx =∫(cosx/(1-sin^2x)^2) sinx=tとおいて ∫(1/(1-t^2)^2)dx =∫(1/((1-t^2)(1+t^2)))dx としているのですが、(1-t^2)^2=(1-t^2)(1+t^2) となる理由がわかりません。 ∫(1/((1-t^2)(1+t^2)))dx =∫1/4{(1/(1+t)^2)+(1/1+t)+(1/(1-t)^2)+(1/1-t)}dx と部分分数分解しているのですが、どのように行えば上記のように部分分数分解出来るのでしょうか? ご回答よろしくお願い致します。 この積分の問題教えてください この問題の答えが無いので教えてください。 自分なりに解いたのですが、合ってるでしょうか? ∫[0,π/2] 1 / sinx+cosx dx tan(x/2)=t とおくと、 dx=2/(1+t^2) dt cosx=(1-t^2)/(1+t^2) sinx=2t/(1+t^2) となる。 置換した後の積分範囲は、 x|0→π/2 t|0→ 1 ∫[0,π/2] 1 / sinx+cosx dx = -2∫[0,1] 1 / t^2-2t-1 dx 分母を平方完成して = -2∫[0,1] 1 / (t-1)^2-2 dx 公式:∫[1 / x^2-a^2] = 1/2a log|x-a/x+a|なので =1/√2 log|(-√2-1) / (√2-1)| logの中が汚いかんじで合ってるか不安です。 教えてください。 置き換え積分法での解き方。 問題集で置き換え積分法で6問 分からない問題がありました。 途中式も含めて、教えてください宜しくお願いします。 (1)∫3x (x + 3)^(3) dx (2)∫x √(1-x) dx (3)∫sin^(4)(x)・ cos(x) dx (4)∫xe^{x^(2)} dx (5)∫xcos{x^(2)+1 } dx (6)∫1 / x(1 + logx ) dx 答え (1)(3/10)(x+2)^(4) (2x-1) + C (2)(-2/15)(3x+2)(1-x) √(1-x) + C (3)(1/5)sin^(5) (x) + C (4)(1/2)e^{x^(2)} + C (5)(1/2)sin{x^(2)+1} + C (6)log | 1 + logx | + C 積分文章問題(質問英語です) The graphs of y=cosx and y=sinx are drawn on the axes below. Find the exact area enclosed between the two curves from x=0 to x= 3Π /4 (shaded) こうやってみました。 ↓ ∫ [0 → Π /4 ] cosx-sinx dx + ∫ [ Π /4 → 2Π /4 ] sinx - cosx dx +∫ [ 2Π /4 →3Π /4 ] sinx dx + l ∫ [ 2 Π /4 → 3 Π/4 ] cosx dx} l 又は ∫ [0 → Π /4 ] cosx-sinx dx} + ∫ [ Π /4 → 3Π /4 ] sinx dx * ∫ [ Π /4 → 2Π /4 ] cos x dxと l ∫ [ 2 Π /4 → 3 Π/4 ]cosx dx l の面積が同じだから。 私の考え方は合っていますか? 又はもっといい考え方があれば教えて頂けますか? 又問題はexact areaで答えよとなっています。 例えば sin Π /4 , sin 2Π /4 などの exact value は知っていますが sin 3 Π/4 などの exact value はどうやって求めればいいのでしょうか? 数III 積分教えてください (1)∫tanx^3 dx tanx*tanx^2とし、1/cosx^2=tとして考えましたがうまくいきませんでした。 答え (1/2)tanx^2+log|cosx|+C (2)∫xcos3x dx f(x)=x,g´(x)=cos3x としましたがうまくいきませんでした。 答え (x/3)cos3x+(1/3)sin3x+C (3)∫dx/{√(x+1)+√x} 答え (2/3)√(x+1)^3-(2/3)√x^3+C 解き方を教えてください。 詳しいとありがたいです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など