締切済み ストークス定理 2011/08/04 23:58 xy平面上の円 c:x^2+y^2=4に沿って。A(x,y,z)=(x^2+y、x^2+2z、2y)の線積分∫c A・drをストークス定理を用いて求めよ。 みんなの回答 (2) 専門家の回答 みんなの回答 spring135 ベストアンサー率44% (1487/3332) 2011/08/05 21:25 回答No.2 ストークス定理より ∫c A・dr=∫s rot(A)・ds sはcによって囲まれる円の中の微小面積 煩雑さを避けるためベクトル記号は適宜省略 A(x,y,z)=(x^2+y、x^2+2z、2y)のとき rot(A)=(0,0,2x-1)=(2x-1)k kはz方向の単位ベクトル ds=nds=kds 故に ∫c A・dr=∫s rot(A)・ds=∫s (2x-1)ds 計算の都合上、極座標表示する。ds=rdrdΘ ∫c A・dr=∫(0~2π)∫(0~2)(2rcosΘ-1)rdΘdr Θによる積分を先に行う ∫c A・dr=∫(0~2)[(2rsinΘ-Θ)](0~2π)rdr=-2π∫(0~2)rdr =--2π[r^2/2] (0~2)=-4π (注)直接∫c A・drを計算して答えが一致することを確かめること。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 FT56F001 ベストアンサー率59% (355/599) 2011/08/05 12:56 回答No.1 1) ストークスの定理 という公式を調べましょう。 2) rot A の面積積分が出てきます。 まず,直角座標におけるrot A の公式を調べましょう。 これに代入すると,rot A の成分表示が求まります。 3) そのz成分を半径2の円内で面積積分して下さい。 4) 検算として,Aを直接線積分した値と比較してみます。 計算は自分でやってみないと力がつきません。 どこまでわかって,どこでつまずいたか,を明確にして, もう一度聞いてみてください。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A Stokesの定理 Stokesの定理とタイトルにありますが、 おそらく単に積分を理解していないのだと思います。 【Stokesの定理】 ∬s(rot(→a)・(→n)dS=∫c(→a)・dr …(*) (→n)は曲面Sの表に立てた単位法線ベクトルとします。 問題は2x+2y+z=2がx軸y軸z軸と交わる点をそれぞれP,Q,Rとして三角形PQRを平面Sとし、 (→a)(r)=(x+2y)(→i)+(y+z)(→j)+(z-x)(→k) で(*)の両辺をそれぞれ計算し、等号成立を示せ、というものです。 左辺を計算すると、∬s(rot(→a)・(→n)dS=(-2/3)∬sdSとなります。 ここで回答が、すぐ「=-1」と書いてあるのですが、 なぜそうなるのかがわかりません。 「=-1」の手前までは理解できます。 また、右辺を計算するときに、積分路C=PQ+QR+RPとして、 ∫pq(→a)・dr=∫pq{(x+2y)dx+ydy}=-∫[0→1]dy=-1となっているのですが、 これもどうしてそうなるのかがわかりません。 (pqは積分路をインテグラルの右下に書きたかったため小文字にしてみました) 積分路を分けていることと、PQにおいてx+y=1,z=0,dx=-dyということは理解できます。 一部省略をしたりしていて、大変見づらいと思います。 とくに、drは正確にはd(→r)でしょうか。 回答も手間がかかるとは思いますが、どうか助けてください。 ストークスの定理 ベクトル場A=(-y,0,0)に対して次の積分(1),(2)の値を各々計算し、ストークスの定理が成り立っていることを証明せよ。 ただし、Sは原点を中心とするxy平面内の半径aの円板、Cはその外周であり、線積分は左回りに行うものとする。 (A,Sはベクトルです) (1)∬s rotA・dS (2)∫c A・dS (1)は自分なりにとりあえずできました。 答えはπa^2になったのですがどうでしょうか?? (2)は線積分がわからなくて困ってます。 月曜日に提出なので、日曜日までに解いてもらえると助かります。 わかりやすいと嬉しいです。 ストークスの定理 ストークスの定理を使ってこの積分を解きたいのですが、どうストークスの定理を使えばよいか教えてください。 x=cos(t), y=sin(t), z=sin(t)の間で一周積分 ∮xdy 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ストークスの定理について ストークスの定理というよりも0と2πの関係についての質問です。 ストークスの定理 ∫s curlF'・n' dS=∮c F'・dr' ('はベクトルの印) (1) について ここで、3次元円筒座標(R,φ,z)で、次の場合を考えます。 F'=φ"/R (φ"はφ方向の単位ベクトル) これはcurlF'=0'を満たします。ですので(1)は(左辺)=0になります。 次に積分経路Cとして半径aの円周を考えて+φ方向に向かって線積分します。 このときdr'=φ"a dφ ですので (右辺)=a∫[0→2π]dφ=2πa になります。 ただこれはデカルト座標で積分すると右辺も0になるのがわかります。 0と2πというのは意味するところは同じで、三角関数が被積分関数のときはうまく機能しますが それ以外の場合はどう扱えばいいでしょうか? すごい初歩的な感じがして申し訳ないですが、ご回答お願いします。 ストークスの定理の証明について。 お世話になります。よろしくお願いします。 ストークスの定理の証明について教えてください。 ストークスの定理の証明は、 http://www.iwata-system-support.com/CAE_HomePage/vector/vectana14/vectana14.html このHPのように、「xy平面に平行な微小長方形を考え、そこで定理が成立するので、 任意の図形でも成り立つ。」としているものが多いと思います。 けれど、微小長方形に平行な平面の座標が(u, v)と変わると、 定理の 「∫_(C)(F→)・(x→) = ∫∫_(S)rot(F→)・d(S→)」・・・(1) のF(x,y,z)もG(u,v)と関数が変わってしまうので、 「∫_(C)(G→)・(l→) = ∫∫_(S)rot(G→)・d(S→)」を変ってしまうので、 (u,v)から(x,y,z)に変換し直す必要があると思うので、それほど単純に明らかではないと私は思うのですが、どうでしょうか? 変換の方法などももし分かりましたら、合わせて教えて頂けると助かります。 よろしくお願いいたします。 ベクトル場Aと閉曲線Cが次のように与えられた時、閉 ベクトル場Aと閉曲線Cが次のように与えられた時、閉曲線Cに沿うベクトル場Aの線積分を、直接計算によって、ストークスの定理を利用してそれぞれ求めよ。 A=(x^2+y-4)i+3xy^2j+(2xz+z^2)k Cは曲面z=4-x^2-y^2とxy平面との交わりで、向きは反時計回りとする。 2通りのやり方で教えてください! ストークスの定理 2次の微分形式1/3(x dyΛdz+y dzΛdx+z dxΛdy)の外微分を求めよ。 そして、ストークスの定理(この場合はガウスの定理ともいう)を述べ、半径rの球の体積を求めよという問題です。 外微分を計算したところ、dxΛdyΛdz になったのですが、ストークスの定理とはどういった関わりがあるのでしょうか? 教科書にストークスの定理がのっておらず、調べてみたものの今一つ関連が分かりません。 分かる方、宜しくお願いします。 ベクトル場Aと閉曲線Cが次のように与えられた時、閉 ベクトル場Aと閉曲線Cが次のように与えられた時、閉曲線Cに沿うベクトル場Aの線積分を、直接計算によって、ストークスの定理を利用してそれぞれ求めよ。 A=yi-xj+zk Cは球面(x^2)+(y^2)+(z^2)=a^2とxy平面との交わりで、向きは反時計回りとする。 わかる方2通りともおしえてください! ベクトルに関する線積分などの問題です ベクトル場A=x^3i+y^3j+z^3k、B=x^2i-z^2j+y^2kがある。 (i,j,kは、x,y,z方向の正の向きの単位ベクトルになります。) (1)線積分∫A・drを求めよ。経路は、(0,0,0)→(1,0,0)→(1,1,0)→(1,1,2)とする。 (2)ベクトル場Bの回転rotBを求めよ。 (3)次の面積分∫rotB・dSを求めよ。ただし、曲面Sは、xy平面上のz>=0にあって、原点を中心とする半径1の半円で囲まれた領域、S={(x,y,z)|x=0,z>=0,y^2+x^2<=1}とする。また、x>0を曲面Sの正の方向とする。 詳しい回答よろしくお願い致します。 (3)に関しては、ストークスの定理を使って線積分に直した方がいいのでしょうか? ストークスの定理を確認する問題です ベクトル場A=(x+zy,yx,y2+xz)中で、平面S:z = 3-3x-2yとx, y, z 軸の正の 部分とでできる閉曲面S を考える。このとき閉曲面Sの全ての辺における線積分の和 ∫A・dl とベクトルの回転の面積分∫(∇×A)・dS が等しいことを示せ。 一通り自力でやってみたのですが 回転の面積分のほうが27/8となり 線積分の和は9/8となり一致しませんでした どちらかは正しいと思うのですが違うほうの解方教えてください 線積分の問題 Φ=Arctan(y/x)とし、Cをxy平面上で原点とし半径aの円とする。 線積分∫c(∇Φ)・dr (drはベクトルです)を求めると、その値は0ではなく、2πになるのですが、なぜでしょうか。どなたかご教授願います。 グリーンの定理、ストークスの定理、ガウスの発散定理 などの関連性 境界付き多様体上の微分形式に対するストークスの定理 ∫C dω=∫∂C ω からの帰結として、 1.微積分学の基本定理。 2.正則関数についてのコーシーの積分定理。 3.グリーンの定理。 4.ベクトル解析におけるストークスの定理 5.ガウスの発散定理 などがあるらしいのですが、それらの関連性がどうも分かりません。 Cやωがどういたっときに、1~5の定理になるのでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 線積分とグリーンの定理 円C1:x^2+y^2=1(x,y≧0)に(1,0)→(0,1)に向きをつける。 C2は(0,1)から原点に向きをつけた線分 C3は原点から(1,0)へ向きをつけた線分、 C=C1+C2+C3とする。 次の線積分をグリーンの定理を用いて計算せよ。 ∫c(2x^2y+xy+y^3)dx+(x^3+4xy^2+y^4)dy という問題があり、C1,C2,C3に分けて C1はグリーンの定理を使い、極座標に変数変換して π/8-1/3 という値を求めましたが、 解答を見るとこれがそのまま答えになっています。 C2,C3の線積分は必要ないのでしょうか? C2,C3もパラメーター表示して線積分してみたのですが C2では0 C3では1/5とでました。 これを足す必要はないのでしょうか? わかりにくい質問ですが、わかる方いらっしゃいましたら お教えください。 よろしくお願いします。 数学科でするグリーンの定理、ストークスの定理等 数学科の初学年の解析で、多変数関数の積分のところでガウス、グリーン、ストークスの定理が出てきます。が、簡単に済ませているような気がします。 線積分は複素解析でも必要ですが、これらの定理は数学科の高学年、大学院とかで使うことはあるのでしょうか? 数学科でベクトル解析とかあまりしないので、何に使うのかなあ、と思います。 ストークスの定理の証明 ストークスの定理より,∂q1/∂y=∂q2/∂x→∫r(q1dx+q2dy)=0(r:roop)と表されるとき,F(x,y)=∫r dFの式より,∂F/∂y=q2であることを確認せよ。 という問題があったのですが教えていただけないでしょうか? 解析学について ∫C (xy^2)dy -(x^2y)dx, Cは原点を中心とする半径aの円 この線積分の求め方を教えてください ガウスグリーンの定理を使うらしいのですが ストークスの定理 正の定数a,bに対して4点(0,0,0),(a,0,0),(a,b,0),(0,b,0)を順に結んだ経路をCとし、Cで囲まれた内部をSとする。 (a)A = xi + yj + zk (b)A = zi + xj + yk で与えられるベクトルAが、面S及び経路Cに対してストークスの定理を満たすことをそれぞれ示せ。 この問題が全然わかりません。 どなたか教えていただけないでしょうか? ガウスボンネの定理で分からないことが有ります。 小林昭七先生の『曲線と曲面の微分幾何』P134問2-2で、表題の定理を球面で検証する問題が出ています。「Kθ1外積θ2」の領域Aでの面積分を使うと確かに計算結果と定理は合致しますが、面積分と等しいはずのω12のdAでの線積分の具体的計算とは合致しません。表題の定理はそれらが等しいというストークスの定理から導かれていて、これらが等しくないと定理自体が成り立たなくなり、非常に悩んでいます。表題の証明ではAを平面領域としているのに、問では球面に適用していることが原因と思いますが、そうなると表題の定理自体が使えないのではないでしょうか?またω12のdAの線積分が使えないのに、測地的曲率の線積分ではdAを使っています。これも理解できません。ご存知の方是非ご教示ください。よろしくお願い致します。 線積分 以下の線積分なのですが、どのように積分すればいいのか分かりません。 どなたか、解答もしくは方針だけでも教えてください。 F=-(GmM)/(|r|^3)・r Fとrはベクトル が与えられている。 (1) ∫[C_1]F・dr (2)∫[C_2]F・dr ただし、各積分領域は C_1については、 点(x_0,y_0,z_0)から点(x_1,y_1,z_1)への線積分で x=x_0+(x_1-x_0)t y=y_0+(y_1-y_0)t z=z_0+(z_1-z_0)t (0<=t<=1) である。 C_2については、円筒座標系で x=pcosφ y=psinφ z=h (0<=φ<=Φ) です。 わかりづらくてすみません。 線積分 ベクトル場F=xy e_x-z e_y+x^2 e_zとスカラー場φ=2xyz^2について、曲線Cをt=0からt=1にいたる空間曲線x=t^2,y=2t,z=t^3とするとき、次の線積分を経路Cに沿って計算せよ。 (1)∫[C] F × dr (2)∫[C] φ dr ただし、F,e_x,e_y,e_z,drのrはベクトルである。 です。途中式もお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など