ベストアンサー 積分に関する質問 2011/07/23 21:40 次の不定積分を求めよ。 ∫2x+3/(x^2+2x+2)^2 dx この問題がさっぱり分りません。 分母が2乗でない場合は解けるのですが、2乗がくるとさっぱり解法が浮かびません。 どなたか解説お願いします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー nag0720 ベストアンサー率58% (1093/1860) 2011/07/24 00:42 回答No.2 x^2+2x+2=(x+1)^2+1 なので、こういう形は x+1=tanθ と置くのが定石です。 ところで、2x+3/(x^2+2x+2)^2と書けば、分子は3だけと解釈されるけどそれでいいの? 質問者 補足 2011/07/24 00:58 失礼しました。分子は2x+3です。 あまりネット上での数式の表記に慣れていないもので・・・申し訳ないです。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) Tacosan ベストアンサー率23% (3656/15482) 2011/07/23 23:47 回答No.1 頭は悪いが部分分数に分解すればどうとでもなる. 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 不定積分と広義積分 不定積分、広義積分を求める問題です。 (1) ∫x^2/(x^4+1)dx (2) ∫(x^2-1)^(3/2)dx (3) ∫(-∞から∞まで)1/(x^6+1)dx 三角関数で置換してやってみたりしましたが、どうも上手くいかないみたいで。何か良い解法があれば教えてください。 不定積分について 大学の微分積分でてきた問題(答えが無い) で(2X+3)/X^2+9を不定積分しろとあったのですが 分子が分母を微分した結果にならないからlogで積分できないし 部分分数にすることもできずまた分子を分母でわることもできず 積分ができなくて困っています それと(X-1)log(X+1)dxの不定積分とe^2xcosxdxの不定積分を 部分積分法を使ってやってみたのですが何回くりかえしても 式が展開されるだけで困っています √の積分について ∫√(3 x^2 - √2 x^3) dx / √(3√2 x + 3) (3x^2 は3エックスの2乗、√2 x^3は√2かけるエックスの3乗) この積分が解けません 解法を教えてください 積分積分――― ∫[1,4] (√(x)-1)^4/√x dx なんですが、 4乗ぐらいならと思い、展開した上でバラバラにし、分母の変数を分子にもってきてから積分をしました。 もっと簡単なやり方があったら教えて下さい。 不定積分の問題です 不定積分を勉強しています。 ですが、大体は教科書を読んで解けるのですが、次の問題は、どうにもうまくいきません。 どなたか、解説をお願いします。 【1】 ∫dx/(1+x+x^2) 【2】 ∫x^2/(1+x^2) dx 【3】 ∫1/(x^2+3) dx 【4】 ∫1/(√a^2-x^2) dx (a>0) 【5】 ∫√x/(1+x) dx 「いろいろな関数の不定積分」だと思います。 でも、うまく発想しません。 参考にしている教科書は、数研出版の数学IIIです。 不定積分を求めるんですが、解けませんでした。 不定積分を求めるんですが、解けませんでした。 ∫x/(x-2)^3dx ∫x(1-x)^4dx ∫x/3乗根√(x+2)dx 教えて下さい 以下の不定積分ができません dx/√(2x^2-1)(インテグラルの記号がわかりませんが不定積分です)を求めよ。という問題がわかりません (1)まず分母の√2をくくり出して√(x^2-1/2)としてから不定積分の公式?を用いると 1/√2×ln{x+√(x^2-1/2)}+Cとなります。 (2)しかし、ln{√2x+√(2x^2-1)}の微分が√2/√(2x^2-1)であることから求めると 1/√2×ln{√2x+√(2x^2-1)}+Cとなります。解答にもこちらが載っています (1)はどこか間違えているのでしょうか? 積分の問題 積分の計算でわからない問題があります^^; どなたか丁寧な解説を教えて下さい(__ ∫xの2乗+10x+7/(x-1)(x+2)の3乗dx ∫dx/eのx乗+e-x乗 ∫0から1までの1/xのp乗dx(pは正の定数) ∫2xの3乗+xの2乗-2x-5/xの4乗-1dx 式がわかりずらくてすいません^^; よろしくお願いします(__ 高校の積分(不定積分の求め方) なんだか書き方がよくわかりません。 問題:次の不定積分を求めなさい。 (1) ∫(-2)dx =∫(-2x)dx =-2x+c これをこのままテストで書いても正解をもらえるでしょうか?? 二重積分の解法 次の問題の解き方に悩んでいます。 ∫∫ (x^2 + y^2) dxdy (ただし、 x^2 + y^2 ≦ 1) この式を自分なりに下記のように解いてみました。 dyは-(1-x^2)^1/2 ~ (1-x^2)^1/2、dxは-1~1の積分範囲としました。 ∫ dx ∫ dy = ∫ 2(1-x^2)^1/2 dx = 2[ 1/2 ( x(1-x^2)^1/2 + arcsin x )] (ここでdxなので[ ]内の積分範囲-1~1) = π/2 - (-π/2) = π としてみました。しかし、問題集では答えがπ/2となっています(解法は載っていない)。 上の解法のどこ(積分範囲?)が誤っているのでしょうか? 不定積分と定積分 この問題教えてください。 不定積分と定積分を求めよ。(2)は上端に3下端に1です (1)∫(4x+3)^6dx (2)∫(3) √2x+3dx (1) (3)∫1/(5-2x)dx (4)∫(2) x{(x/2)-1}^7dx (6) (5)∫e^(-5x) dx 不定積分の求める過程での質問です。 不定積分の求める過程での質問です。 ∫(x+2)^4(x-1)dx=∫(x+2)^4{(x+2)-3}dx 『上記を次数の高いほうに合わせ、強引にカッコの中をそろえる』 =∫{(x+2)^5-3(x+2)^4}dx とあるのですが、 (x+2)^5 何故5乗しているのかが理解できません。 詳しい回答よろしくお願いいたします。 積分について教えてください。 積分について教えてください。 次の不定積分を求めよ。 ?∫3dx ?∫5x^2dx …今日習ったばかりなのですが、いまいち理解できません。 途中の式まで書いていただけるとありがたいです。 積分問題 次の積分問題の解法を教えてください。 ∫(a^2+x^2)^(-3/2)dx 広義積分・2重積分について (1)∫(0→3)1/(√x-1の3乗根)dxの解法を教えてください。 (2)2重積分のdxdyとdydxとでは何がどう違うのですか。dx、dyの順番は関係あるのでしょうか。ご教示をお願いします。 数III・Cの積分の問題 下記の3つの問題どれかひとつでもいいので解き方を教えてください。 (1)不定積分∫4x²+x+1/x³-1dxを求めよ。 (2)不定積分∫3x+1/(2x-1)(x+2)dxを求めよ。 (3)不定積分∫x-9/x²-1dxを求めよ。 すべて分数の積分です。 よろしくお願いします。 不定積分 この問題教えてください。 次の不定積分を求めよ。 1. (2x+3)^2 dx 2. 1/x^5 dx 3. √x dx 4. 1/√x dx 5. x^5-4x^4+2x^2-6/x^3 dx 6. 1/x^2+9 dx 7. 2x+1/x^2+x+1 dx 積分の問題で質問です。 不定積分∫dx/(x^4+4)を求めよ、という問題です。 部分分数分解して、 ∫{(-x/8+1/4)/(x^2-2x+2)+(x/8+1/4)/(x^2+2x+2)}dx の形に変形したのですが、とりあえず(-x/8+1/4)/(x^2-2x+2)だけ見て、 (-x/8)/(x^2-2x+2) + (1/4)/(x^2-2x+2) と分解して、片方ずつ積分しました。ここで、 ∫(-x/8)/(x^2-2x+2)dx (x^2=tと置く置換積分を利用しました) =-1/16∫dt/(t-2√t+2) =-1/16∫dt/{(√t-1)^2+1} =(-1/16)*arctan(√t-1) =(-1/16)*arctan(x-1) ∫(1/4)/(x^2-2x+2)dx =1/4∫dx/{(x-1)^2+1} =(1/4)*arctan(x-1) となりました。(x/8+1/4)/(x^2+2x+2)の積分も同様に解きました。 この解き方だと答えにlogは出てきませんが、解答を見るとlogが入ったものとなっていました。一応、別の方法でその解答の形までたどり着けたのですが、上で説明したやり方が間違っているとは思えません。この解法は合っていますか?それとも間違っているのでしょうか。 どなたか教えてください。 定積分についての質問です。 定積分についての質問です。 問題は ∫(0~1) {Sin^-1 (x)}^2 dx (アークサイン x の2乗) です。 部分積分も置換積分も通用しません! 解る方よろしくお願いします。 不定積分です。 次の関数の不定積分を求めよ。 e2x/ex+2 以上です。 以下、自身の考えを書きます。 まず、分母のex+2=tとおくと、dt/dx=exから、dx=dt/ex これを代入したのですが、その先が分かりません(涙) よろしくお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
補足
失礼しました。分子は2x+3です。 あまりネット上での数式の表記に慣れていないもので・・・申し訳ないです。