そもそも、ピタゴラスの定理って定理なのでしょうか?
そもそも、ピタゴラスの定理って定理なのでしょうか?
いいかえると、真実なのでしょうか?
これは、実は簡単にわかります。証明できません。
なぜなら、非ユークリッド幾何学という反例があるから。
だから、ピタゴラスの定理っていうのは、定理ではなくて、
普通のユークリッド幾何学を展開していく上での、仮定とか前提と考えたほうがいいと思います。
ではなぜ、世の中にたくさんある「ピタゴラスの定理の証明」なるものはなんなのでしょうか?
それは、ユークリッド幾何学を特徴づけるピタゴラスの定理よりも、
よりも基本的な公理を仮定していなければなりません。
一般的には、第五公準(平行線は唯一唯一つ)ってのがそうだと思われます。
しかし、その前に、点とか直線とか、距離とか、角度とか、合同とか、たくさんの概念が定義されなくてははなりません。
ところで、数学基礎論では、まず、集合とその間の演算を公理的に定義し、また、自然数と和や積を定義します。
それによって、数論の基本的な結合法則、可換法則、分配法則といったものも、「証明できる」ものになります。
1+1=2というのも「証明できる」ものになります。
同じようにしていけば、ピタゴラスの定理って基礎論的に、公理的に、「証明できる」定理なのでしょうか?
実は、「幾何学基礎論」という本を軽く読んだり、いろいろ検索してみたのですが、ピタゴラスの定理は載ってませんでした。
もしかして、ピタゴラスの定理っていうのは、基礎論的にも、公理的にも、「証明されていない」ものなのでしょうか?
ちなみに、sinθ, cosθを、無限級数の和として定義してやって、
それによってユークリッド幾何の回転を定義し、sin^2θ+cos^2θ=1となるので「証明できた」というのは、たぶん、万人は認めないと思います。
お礼
図書館で探して読んでみましたが, 確かに,非常に分かりやすく面白い本でした. 回答ありがとうございました.