- 締切済み
数列の自然数の2乗和
数学Bの数列の範囲で 自然数の2乗の和は1/6n(n+1)(2n+1)で求められるとなっていて それの証明が 恒等式k^3-(k-1)^3=3k^2-3k+1でkに1からnまでを順々に代入して求めたn個の等式の両辺を加えるというものでした たしかにこれで1/6n(n+1)(2n+1)は求められたのですが なぜいきなり恒等式k^3-(k-1)^3=3k^2-3k+1が出てきたのか分かりません なにか他に違う求め方とかあるのでしょうか?
数学Bの数列の範囲で 自然数の2乗の和は1/6n(n+1)(2n+1)で求められるとなっていて それの証明が 恒等式k^3-(k-1)^3=3k^2-3k+1でkに1からnまでを順々に代入して求めたn個の等式の両辺を加えるというものでした たしかにこれで1/6n(n+1)(2n+1)は求められたのですが なぜいきなり恒等式k^3-(k-1)^3=3k^2-3k+1が出てきたのか分かりません なにか他に違う求め方とかあるのでしょうか?