弧の中点
△ABCの外接円の弧BCと点Pで、2辺AB,ACと点D,Eで接する円をえがくと、直線DEは△ABCの内心を通る。このことを証明する途中で、弧ABの中点を求めるのですが、なぜ中点になるかが、わかりません。
略解では、Pにおける共通接線をPTとし、PDがふたたび△ABCの外接円と交わる点をMとし、点Mにおける接線をMSとすると、∠SMP=∠TPM=∠TPD=∠BDP
つまりMS//AB ここからがわからないところです。よって点Mは弧ABの中点で、MCは∠ACBを二等分する。・・・自分でインターネットを使って調べたところ、接する2つの円の相似の中心は接点であると、円O上に点A,B,Pがあり。別の円O'が線分ABと点Qで接し、円Oと点Pで接するとき、PQと弧ABの交点Mは弧ABの中点になっている。という定理を見かけましたが、円O'の中心O'、円Oの中心Oとして、QO'とMOの平行から、直線OMはABに垂直になることがわかりません。垂直ならば、点Mは弧ABの中点というのはわかります。平行から弧ABの中点を導く点は、似ていると思うのですが、これら以外の方法でもいいので、MS//ABよって点Mは弧ABの中点を教えてください。お願いします。