締切済み 平面図形 2009/10/25 17:24 三角形ABCにおいて、 辺AC上に点Eを∠ACB=∠ADEとなるようにとる。 AB=6cm、AD=4cm、AE=3cm のとき、線分CEの長さを 求めなさい。 みんなの回答 (1) 専門家の回答 みんなの回答 noname#101303 2009/10/25 21:29 回答No.3 「三角形ABCにおいて、辺AC上に点Eを∠ACB=∠ADEとなるようにとる。」 点Dはどこにある? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学の問題(長さを求めよ)を教えてください 図のようにAB<ACである三角形ABCにおいて、辺AB上に点Dをとり、辺AC上に点Eを∠ACB=∠ADEとなるようにとる。AB=8cm、AD=4cm、AE=3.2cmのとき、線分CEの長さを求めなさい。 という問題の解法を教えてください。 直角二等辺三角形を用いた平面図形の証明問題 ⊿ABCを∠A=90°、AB=ACとなるような直角二等辺三角形とする。辺AB、AC上に点D,Eをそれぞれ AD=2BD、CE=2AEとなるようにとると、∠ADE=∠EBCとなることを示せ。 という問題がわかりません。 点EからBCに平行な直線を引いて考えればいいのかなと思ったのですが、そこで行き詰ってしまって… よろしくお願いします。 平面図形 三角形ABCがある。AB=6、BC=10であり、AC上に点Dをとり、DCの長さを6とし、DBの長さを6とする。 また、ADの中点をEとする。辺ABを3:1に分ける点をFとする。 辺DBの延長と辺EFの延長して、交わった点をGとする。 このときAEの長さを求めよ。またBGの長さを求めよ。 と言う問題です。 わかっていることをまとめると 長さがわかっているのは AB=DC=DB=6 BC=10 ADを1:1に分ける点をE ABを3:1に分ける点をF △DBCと△ABDは二等辺三角形である と言うことが文章からわかると思います。 まずAEの長さを考えると 点DからBCに垂線を引き、その交点をHとする。 また△ABDは二等辺三角形だから、点Eと点Bを結ぶ △CDH∽△CBEであるから CD:CB=CH:CE 6:10=5:CE 6CE=50 CE=25/3 CD=6より DE=CE-CD =25/3-6 =7/3 となり DE=EAなので AE=7/3となりました。 次に 辺の比を使って何とかGBの長さを求めようとしたのですがさっぱりわかりません。 すいませんが、詳しい解説をお願いします。またこのような問題の考え方がありましたら教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 平面図形 答えが合いません BC=5、AB>ACであるような△ABCがある △ABCの外接円の点Aにおける接線が直線BCと交わる点をDとすると、CD=4である (1)DAの長さを求めよ (2)∠ACB=2∠ABCのとき、AB、ACの長さをそれぞれ求めよ (3)直線ADに平行で、辺AB、ACと交わる直線を引き、交点をそれぞれE、Fとする。(2)のときAE=xとして、CFの長さをxで表せ (4)3)において、AE=CFのときEFの長さを求めよ この問題もうすでに2時間以上考えたんですが(2)すら解けません (1)は図を描いて方べきの定理でDA=6とだせました (2)は、グラフを書けばわかるんですが△ABDは∠BAD=90°の直角三角形なので、三平方の定理からAB=3√5とでたんですが回答にはAB=6、AC=4と書いてありました。 私のやり方が間違っているのでしょうか? それとも回答が間違っているのでしょうか? 平面図形の問題 図のような△ABCがある。辺BC上に点Dを、辺CA上に点Eを、辺AB上に点Fを、BD/DC=CE/EA=AF/FB=1/2となるようにとる。さらに、線分ADと線分CFとの交点をP、線分ADと線分BEとの交点をQ、線分CFと線分BEとの交点をRとする。 △PQRと△ABCの面積比△PQR/△ABCの値を求めよ。 という問題の解き方を教えてもらえないでしょうか? 回答よろしくお願いします。 平面図形の問題です!! 3辺の長さが AB=7、BC=5、CA=3√6である三角形ABCにおいて、 辺ACを直径とする円が辺AB、BCと交わる点を それぞれD、Eとし、CDとAEの交点をFとするとき、 線分BFの長さを求めよ。 早めの解説をお願いしたいです。 平面図形の問題 図のように、∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。 △ACPの面積の最大値を求めよ。 と言う問題があるのですが、(1)の1つ目の問題しか解けませんでした。分かったものだけでもいいので、お待ちしております。 図形の問題 専門学校受験の為、独学で勉強している主婦です。以下の過去問がどうにもこうにも解けません。ご指導、お願いいたします。 AB=AC=8cmである二等辺三角形ABCの辺AC上にAD=5cmである点Dをとったら、△ABC∽△BCDとなった。 (1)辺BCの長さは[ ]cmである。 (2)さらに辺AC上に∠ABE=∠CBEである点Eをとると 線分AEの長さは[ ]cmである。 解答は (1)2√6 (2)16(4-√6)/5 (1)は理解できるのですが、(2)がどうしても導けません。 どうぞよろしくお願いいたします。 中学数学の図形の問題です。 数学の図形の問題がわかりません。教えてください。よろしくお願いいたします。 図のようにAB=6cm、BC=9cmの長方形ABCDがある。辺ADの上側に点Eを、AB=AE、AD=DEとなるようにとる。また、点Eから辺ADにひいた垂線と辺ADとの交点をFとし、点Dから線分AEにひいた垂線と線分AEとの交点をGとする。点Hは線分CEと辺ADとの交点である。 このとき次の問いに答えなさい。 ・点Eと直線CDとの距離を求めなさい。 ・線分DHの長さは線分FHの長さの何倍か求めなさい。 平面図形の問題 模試の過去問なのですが解き方が全く分かりません。 鋭角三角形ABCの2辺AB,AC上にAD=DB,AE=ECを満たすように2点D,Eをとる。 また、線分DEの中点をM,AMとBCの交点をNとする。 このとき、AM:MNの値を求めよ。 どこかに平行線を引けばいいのでしょうか? 平面図形です。添削をお願いします。 平面図形です。添削をお願いします。 問い.右の図のように、正三角形ABCの辺AB、AC上にそれぞれ点D、EをAD=CEとなるようにする。線分BEとCDとの交点をFとするとき、∠BFCの大きさを求めなさい。 【証明】 △EBCと△DCAにおいて、 BC=CA…(1) ,仮定よりAD=CE…(2) ∠BCE=∠CAD=60°…(3) (1),(2),(3)より2辺と間の角がそれぞれ等しいので △EBC=△DCA よって、60°=∠BCF+∠ACD =∠BCF+∠CBEであるから、 ∠BCF=180°-60° =120° 数学の面積を求める問題です。 図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。) 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 高校入試・平面図形の問題 次の問題がよくわかりません。詳しく、分かりやすく教えてください。 //////////////////////////////////////////////////////////// 【1】下の図で、△ABCの3つの辺に接する円の中心をOとし、点Oを通り辺BCに平行な直線と辺AB、辺ACとの交点をそれぞれD、Eとする。このとき、次の問いに答えなさい。 (1)AB=4cm, BC=5cm, AC=3cm, ∠BAC=90°のときの、点Oの半径を求めなさい。 (2)AB=5cm, BC=6cm, AC=4cm のとき、線分DOの長さと線分EOの長さの差を求めなさい。 //////////////////////////////////////////////////////////// よろしくお願いします。 平面ベクトルと図形 平面上に△ABCがあり、AB=5.BC=aとする。∠Bの二等分線が辺ACと交わる点をD.辺BCを5:2に内分する点をE.BDとAEの交点をF.CFの延長とABの交点をGとする。(1)ベクトルAE=2/7AB+5/7ACである。(2)AD:DC=5:aであるから、ベクトルAD=5/5+aである。(3)ベクトルDE=2/7AB+5(a―2)/7(5+a)ACであるからまでは分かるんですがその続きのDE平行ABとなるのはa=4になるのがよく分かりません。一度教えていただいたんですが…教科書のヒントにはDE平行ABとなるための条件は、ベクトルDE=kベクトルABを満たす実数kが存在すること。とあるんですが、このヒントを使っての解き方が分かりません。お願いします。教えて下さい。 三角形の相似 図のように.∠ACB=90°の直角三角形ABCがある. 辺AB上に点D.辺BC上に点Eがあって.AD=DE.DE⊥BCである. また.点Cから辺ABに垂直CFを引き.線分AEとCFの交点をGとする. (1)△AFGと△ACEが相似であることを証明してください (2)AB=9cm.AD=4cmのとき.CGの長さを求めてください 解けなく困っています 図形と方程式の問題です。教えて下さい! 三角形ABCがあり、AB=8、AC=5、∠A=60°である。 3つの辺BC,CA,ABとそれぞれ点D,E,Fで接する円の中心をIとする。 線分AEの長さを求めよ。また三角形ABCの外接円の中心Oとする。 線分OIの長さを求めよ。 IEの長さは分かったのですが、このあとのAEとOIの長さの求め方 が分かりません。教えて下さい。 平面ベクトルと図形 平面上に△ABCがあり、AB=5.BC=aとする。∠Bの二等分線が辺ACと交わる点をD.辺BCを5:2に内分する点をE.BDとAEの交点をF.CFの延長とABの交点をGとする。(1)ベクトルAE=〔ア〕ベクトルAB+〔イ〕ベクトルACである。(2)AD:DC=〔ウ〕:〔エ〕であるから、ベクトルAD=〔オ〕ベクトルACである。(3)ベクトルDE=〔カ〕ベクトルAB+ベクトルACであるから、DE平行ABとなるのはa=〔ク〕のときである。(4)ベクトルAF=〔ケ〕ベクトルAB+〔コ〕ベクトルACである。(5)ベクトルCF=〔サ〕ベクトルCGである。(6)△ABC=2△ABFとなるのは、a=〔シ〕のときである。…という問題です。長々とすいません。本当に分からなくて困ってます。〔ア〕~〔シ〕までの回答をできれば解説つきでよろしくお願いします。 数学「図形の性質」 ∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。△ACPの面積の最大値を求めよ。 求め方がわかりません。 三平方の定理を使ってADを求めたのですが、間違っているような気がします。 解説よろしくお願いします。 平面図形 △ABCにおいて、辺ABを2:3に内分する点をD、辺ACを3:1に内分する点をEとする。 そして点D、Eから辺BCと平行な直線を引き、それと辺AC、ABとの交点をそれぞれF、Gとする。 (問) DG:ABを求めよ。 全く分からず図しかかけてません(;_;) 教えてください! 中学入試の平面幾何 中学入試を控えた従兄弟の勉強を見ていて、理解できない点があったので質問します。 「三角形ABCがあり、辺AB、AC上に2点D、Eがある。AD=4cm、DB=2cm、AC=8cmであり、線分DEが三角形ABCの面積を二等分するとき、線分AEの長さを求めよ」という問題です。 私は AD×AE:AB×AC=1:2 という考え方で答えを求めたのですが、従兄弟は (ADの二乗)={(DB+EC)の二乗} という考え方から答えを求めていました。 どちらもAE=6cmとなり、答えはあっています。しかし私は従兄弟は何か勘違い(解法を間違って覚えた等)していて、今回は偶然合っていたのだと思います。けれども、従兄弟は塾で習っていて正しいと言います。理工学部卒の父に聞いてもこのやり方は理解できないと良います。 従兄弟のやり方は正しい、つまり問題の数字が変わっても正答を導けるのでしょうか?一応塾で質問してもらうよう頼んでみますが、以前にも質問を頼んだが自分の中で解決されたこともあり、従兄弟の報告は期待できません。数学を専門に学んだ方、中学受験の指導経験のある方に回答をお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など