締切済み 代数学の問題なのですが、 2010/11/05 10:48 代数学の問題なのですが、 G=〈x〉を位数n<∞の巡回群とする。mは自然数でnはmZに属する元で位数mの部分群がただひとつ存在することを証明せよ。 という問題なのですが教えてください。 みんなの回答 (2) 専門家の回答 みんなの回答 muturajcp ベストアンサー率78% (508/650) 2010/11/07 05:17 回答No.2 G=<x> x^n=e n∈mZ だから n=mk となる自然数k=n/mがある <x^k>は位数mの部分群となる Hを位数mの部分群 j=min{j|j>0,x^j∈H}とすると H=<x^j> jm=n=mk j=k H=<x^k> ∴ <x^{n/m}>=<x^k>は唯一の位数mの部分群となる 通報する ありがとう 0 広告を見て他の回答を表示する(1) koko_u_u ベストアンサー率18% (216/1139) 2010/11/05 15:58 回答No.1 存在することは簡単に示せますよね。補足にどうぞ。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学の問題です。 代数の問題ですが、まったく分かりません。 数学は得意ではないのですが、わけあって代数の問題を解かなくてはいけないのです。 力を貸してください。 1 巡回群G=<a>が<a>=<a^m>(m∈Z)になるためには無限巡回群に対してはm=1,-1が位数nの巡回郡に対しては(m、n)=1がそれぞれ必要十分であること証明せよ。 2 位数24の巡回群G=<a>に対して、Gの生成元をすべて求めよ、また、Gの真の部分郡をすべて求めよ 記号の意味、内容も分からないので、詳しく教えて頂くとうれしいです。 お願いします。 代数学 代数学の範囲で不明な点があったので質問させていただきます。 群G≠{e}について次の3つはなぜ同値なのでしょうか? 1、Gの部分群はGと{e}のみ 2、Gは素数位数の有限巡回群 3、Gは有限可換単純群 2の位数が素数の群は巡回群であることの証明は理解できたのですが、上の三つが同値であることがわかりません。 教科書でも当たり前のように書いてあったので・・・。 よろしくお願いいたします。 代数学の、群の問題を教えて下さい。 nは正の整数とする。Gは位数nの巡回群とする。この問題では、GはZ/nZに同型であることを示す。 (1)Gの生成元xをとり(つまりG=<x>)、群の準同型定理f:Z→Gをm∈Zに対してf(m)=x^mで定める。このときfは全射であることを示しなさい。またKerf=nZであることを示しなさい。 (2)fに準同型定理を適用して、Z/nZ≃Gを示しなさい。 という問題です。お願いします。 x^2 ≡ 1 mod n nが素数で nを法とする既約剰余群(Z/nZ)*において 位数が2の元は-1だけであることを示したいのですが、 x^2 ≡ 1 mod n ⇒ (x-1)(x+1) ≡ 0 mod n ⇒ x = ±1 ではダメでしょうか。 ある本だと 以下の定理を使っています。 「Gを有限巡回群とする。|G|の任意の約数dに対して位数dのGの部分群が唯一つ存在する。」 この定理より nの既約剰余群において、位数2の元は-1のみ。 しかし、この定理の証明が私にとって難解で、まったく理解できません。 結局、位数2の元が-1だけであることを言いたいので x^2 ≡ 1 mod nを 上記のように解けば説明になっているのでは?と思いました。 x^2 ≡ 1 mod n を解くだけで説明になっているでしょうか? アドバイスお願いします。 また、もしできたら 「Gが有限巡回群のとき… |G|の任意の…」 の定理の証明をわかりやすく説明していただけないでしょうか。 ある問いの巡回群の証明 Gを有限群として、任意の自然数dに対してGの部分集合 {x|x^d=e,x∈G} に含まれる元の数がd以下ならGは巡回群となる。 Gの位数をnとしてnの元の存在を示そうと思うんですがうまく説明ができなく困ってます、、 代数系の勉強をしています。 代数系の勉強をしています。 しかし、まったくわかりません。 3次対称群の位数3の部分群の求め方や、各元で生成される巡回部分群の求め方、(R*,X),(z,+)とは何ですか? 丁寧に教えてください。よろしくお願いします。 代数学 Kを標数0の体とし、(X^n)−1をK[X](Kの1変数多項式環)の元とします。このとき、 (X^n)−1=0の解ζで、 (X^n)−1=(X−1)(X−ζ)…(X−ζ^(n−1)) となるζが存在することを証明して欲しいです。 一応自分なりに、方程式(X^n)−1=0は重解を持たないから(もし重解なら一回微分nX^(n−1)=0の解である事を考えて示せた)、 (X^n)−1=(X−1)(X−a[1])…(X−a[n−1]) とかけ、a[1]≠1で、a[1]^n=1より、 巡回群〈a[1]〉の位数はn以下である事はわかりました。 〈a[1]〉の位数がnであることが示せたら証明出来た事になると思うのですが、それが示せません。 群Gの元aの位数 35歳すぎにして、代数学の初心者です。 代数における群Gの元aの位数の意味がよくわかりません。位数って群の元の数ですよね?ってことは、元aが位数を持つということは、元aも群だということなのでしょうか?元aは群Gの部分群でないと、元aは位数を持たないのでしょうか? これがわからないので、「群Gの元aの位数がmnならばa^nの位数はmであることを示せ」などといわれても、ちんぷんかんぷんです。 どなたか、判りやすく教えていただける方がいましたら、よろしくお願いいたします。 代数の次の問題を教えてください 代数の次の問題を教えてください (1)3次対称群S3においてб=(1,2)と交換可能な元をすべて求めよ (2)4次対称群S4においてб=(1,2)と交換可能な元をすべて求めよ (3)4次対称群S4の部分群で位数が3以下のものをすべて求めよ (4)4次対称群S4の巡回部分群で位数が4のものをすべて求めよ (5)τбτ^-1=(145)(23)をみたすτを1つ求めよ (1)(2)は確認のためなので答えのみお願いします (3)(4)(5)はちょっとした解説をつけていただけるとありがたいです 代数の問題です。 大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ 群の位数の問題なんですが? 位数が偶数の群は位数2の元を持つんでしょうか? 群が位数2nの巡回群<a>ならば a^n を考えれば位数2の元になります。 それ以外に関しては、位数が小さい群ならばなんとなくイメージできるんですが一般の場合どうなるかうまく証明できません。 どなたかもしおひまであればお教え願えないでしょうか。よろしくお願いします。 巡回群について 「Gを位数nの巡回群とする.このとき,Gの部分群の位数はnの約数で,各約数に対してただ一つ存在する.」 この証明でいくつか分からなかったので教えてください. (以下証明) G=<g>とし,m|nであるとする. ここでn/m=cとおくと,<g^c>は位数mの巡回部分群になる. また,これと異なる位数mの巡回部分群Sが存在すると仮定する. g^k∈S (kはこれを満たす最小の正整数)とすると,剰余の定理から n=qk+r (0<q∈Z,0≦r<k) となるq,rが存在する.このとき, g^r=g^(n-qk)=g^n(g^(-k))^q∈S で,kの最小性よりr=0を得る. よってn=qkとなり,Sの位数はqとなる.-(1) したがってm=qとなり,S=<g^c>.-(2) 以上より,nの約数に対して,ただひとつの巡回部分群が存在する. (証明終) この証明の最後の, (1):Sの位数はqとなる (2):S=<g^c> の部分がわかりませんでした. (1)について (g^k)^q=g^qk=g^n=e となりますが,これより「Sの位数はq」ということですか? (2)については包含関係を示しているのでしょうか? その辺がよくわかりませんでした. 長文申し訳ありませんがよろしくお願いいたします. 代数学の直積に関する質問です 代数学の質問です <a>,を<b>1と異なる2つの巡回群とするとき、<a>×<b>が巡回群であるための必要十分条件は、o(a),o(b)がともに有限で、かつ互いに素であることを示せ 資料を参考にしながら、十分条件は示すことができ たと思うのですが、必要条件の証明の方法がわかりません ちなみに、十分条件の証明として、 <a>×<b>の元(a,b)の位数は、(a,b)^s=(a^s,b^s)が単位元(1,1)に等しいためには、a^s,b^sがともに単位元である必要があるため、sがm,nの公倍数であることと同値である。m,nは互いに素であるためsがmnの倍数であることと同値である という証明で良いでしょうか よろしくお願いします 巡回群 「Gを位数がnの巡回群とする。nの任意の正の約数dに対して、Gは位数dの部分群をちょうど1つだけ持つことを示せ。」 私はこれを次のようにして示しましたが・・・。 xをGの生成元とする。するとx^n=eである。 dはnの約数であるから、∃q∈N s.t. n=dq が成立。 すると、x^n=(x^q)^d=eである。 よって、x^q∈Gから生成される巡回部分群Hを考えると H={x^q,x^(2q),・・・,x^((d-1)q),e}で、Hの位数はdである■ (1)とりあえず位数dの部分群の存在は示せたと思うのですが・・・あっているでしょうか? (2)あと、問題文を見る限り、位数dの部分群の"一意性"も示さねばならないと思うのですが、これがよくわかりません。 位数dの部分群H'を任意に取ってきて、H=H'であることを示せばいいのかな?と思ったのですが、できませんでした。。。 (1)(2)に関して、どなたかわかる方がいましたら、教えていただけないでしょうか?よろしくお願い致します。 代数の問題です。 加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ 代数学の問題なのですが 代数のレポートなのですが、苦手なのでよくわかりません。 一問だけでもいいのでどなたか教えてください。 m、n;互いに素な自然数 f;z/mnz → z/mz×z/nzをf(a+mnz)=(a+mz,a+nz)と定義する。 (1)fはwell-definedであることを示せ。 (2)fは全単射であることを示せ。 (3)fは(z/mnz)* を(z/mz)* × (z/nz)*の上にうつすことを示せ。 (4)(3)を使ってψ(mn)=ψ(m)ψ(n)を示せ。 お願いします。 代数学 代数学で分からない問題が・・・。 (1)有限環Z/nZの単元全体(Z/nZ)*の成す群の位数は オイラー関数φ(n)と一致することを示せ。 ただし、φ(n)=#{1≦x≦n|(x,n)=1}とする。 (2)有限環Z/nZが体であるための必要十分条件はnが 素数であることを示せ。 なんですが、わかりません。一つでもいいので教えてください。よろしくお願いしますm(__)m 次の代数学の真偽を教えてください。(理由も添えて) 1.位数が素数である有限群は巡回群である。 2.有限アーベル群はすべて巡回群である。 3.巡回群はすべてアーベル群(=可換群)である。 4.Z/4ZとZ/2Z×Z/2Zは共に位数4のアーベル群である。 5.Z/4ZとZ/2Z×Z/2Zとは同型な群である。 6.アーベル群の部分群はすべて正規部分群である。 7.位数が同じ有限群GとG'は同型である。 8.位数が素数である有限群はアーベル群(=可換群)である。 素数の分類と無限性に関して。以前質問させていただいたことの延長になりま 素数の分類と無限性に関して。以前質問させていただいたことの延長になります。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 同じ方法を用いることで証明することはできたのですが、 この証明の中で用いている「位数は 8 で有るから、 p ≡ 1 (mod. 8) となるの部分に関して ラグランジュの定理 位数nの有限郡Gの任意の部分郡Hの位数はGの位数の約数である を用いた場合、GとHに当たる部分はどこになるのでしょうか。今の段階では、nがp-1にあたり、Hの位数が8と考えています。pが素数で、8はp-1の約数になるとの考えは当っているでしょうか・・? よろしくお願いします。 位数を求める問題で、次のように考えたんですが <a>を位数が100の巡回群とする この部分群<a^162>の位数を求めよ 162×m≡162(mod 1000)を解けばよい 162(m-1)≡0(mod 1000) また、<a^162>の位数をnとおくと、n=m-1なので 162n≡(mod 100) は満たさなければならないため、nは100の倍数 故に、162×100=16200 162 200=32400 162×300=48600 162×400=64800 162×500=81000 よって、n=500 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど