- ベストアンサー
波の式について
波の式について 原点でAcos(ωt-kx)の波を出し Lm先の固定端に当たって返ってくる波の式がAcos(ωt+kx+π-2kL) だそうです。 固定端なのでπづれるのは分かります。 2L/ω秒前の波なのでAcos(ω(t-2L/ω)-kx+π) になると思ったのですが、どういう考えをすればいいのでしょうか?
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
>基本過ぎて申し訳ないのですが、kってなんなんでしょう?? あらら、波数って知りませんか? 波長をλとしますと、波数kは次のように表せます。 k=2π/λ [rad/m] 単なる定数ではありません。 波数の意味は、位相2πの間にある波の個数(位相2πが何波長分あるか)を示しています。 y=Acos(ωt-kx)の波を xy平面上に描いてみれば分かりますよ。
その他の回答 (1)
- Mr_Holland
- ベストアンサー率56% (890/1576)
回答No.1
>2L/ω秒前の波なのでAcos(ω(t-2L/ω)-kx+π) 2L/ω では時間の単位になりませんよ。 往復の距離 2L での位相は 2kL ですから、この間の時間は 2kL/ω になります。 また、kx の符号も考えないといけません。 Acos(ωt-kx) は+x方向への進行波ですので、反射波は-x方向への進行波になります。 従って、kx の符号は反転させなければなりません。
質問者
お礼
ありがとうございます。 基本過ぎて申し訳ないのですが、kってなんなんでしょう?? 定数ですよね??
お礼
ありがとうございました