• 締切済み

確立の問題が難しくてわかりません;;

9枚のカードがあり、そのおのおのには、I,I,D,A,I,G,A,K,Uという文字が1つずつ書かれている。これら9枚のカードをよく混ぜて横一列に並べる。D,G,K,Uのカードだけを見たとき,左から右へこの順序で並んでいる確立は? また、Iのカードが3枚続いて並ぶ確立は?  わかる方 式とやりかたを教えて貰えませんか? 困っています。

みんなの回答

  • fef
  • ベストアンサー率64% (16/25)
回答No.3

naniwacchiさんの回答1について, 「はさみこむ」という表現はおそらく誤解を招くでしょうから, 少し補足させていただきます. 「D,G,K,Uのカードだけを見たとき,左から右へこの順序で並んでいる」場合の数を計算するには, カードを配置する9か所の中から,  (1) まず,D, G, K, U のカードを入れる場所を選び,  (2) 次に,そこに左から D, G, K, U を並べていき,  (3) 最後に,残りのカードを並べていく, という手順で考えます. (1), (2), (3)で求まる場合の数の積が 「D,G,K,Uのカードだけを見たとき,左から右へこの順序で並んでいる」場合の数となりますね. (この論理は大丈夫でしょうか?) (1) まず,D, G, K, U のカードを入れる場所の選びましょう. 9か所の中から4か所を選ぶので, その方法の数は C(9, 4) で計算できますね. (2) 次に,選んだ場所に D, G, K, U のカードを並べていきましょう. D, G, K, U のカードがこの順序で並ぶと言っているので, これらのカードを入れる場所さえ選んでやれば, 入れ方は1通りに決まります. 例えば,以下の“_”の部分に D, G, K, U を入れる場合を考えてみましょう:  I I _ A I _ A _ _ このとき,左から順に D, G, K, U と入れる方法は  I I D A I G A K U の1通りしかありませんよね. (3) さて,最後に,残りのカードを並べましょう. 残っているカードは I が3枚と A が2枚ですね. 残っている5か所から A を入れる2か所を選べば,カードの並べ方は決まります.

  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.2

#1です。 >全体の 9!しかわからないです。 全体は、9!にはなりません。 9枚とも区別ができるのであれば、これで全体となりますが、 いまの問題では、3つある「I」や 2つある「A」の並びが重複してしまいます。 9!と並べたうちから「重複する分」を割ってしまう方法もありますが、 次のような考え方もあります。 9つの「席」のうち、Iが入る 3つを「選ぶ」、 次に残った 6つから Aが入る 2つを「選ぶ」、 最後に残った 4つの席については D,G,K,Uを「並べる」 いずれの考え方も組合せの数は同じになります。 まずは、ここができるようにしっかり考えてみてください。

  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

こんばんわ。 まず「確立」されては「確率」でなくなります。 確率なので、分母にあたる全体の組合せを調べる必要があります。 とりあえず、9枚のカードを並べることを考えて、重複する分だけ「割って」あげれば全体の組合せは計算できます。 >D,G,K,Uのカードだけを見たとき,左から右へこの順序で並んでいる 逆の見方をしてみます。 D,G,K,Uと並んでいるところに、I×3つと A×2つをはさみこむ。 3枚続く場合は、ひと固まりにして考えればいいですね。 まずは計算してみてください。 できたところまでで、補足に書いてもらえれば見たいと思います。

lionda
質問者

補足

確率を確立とミス打ちしてしまいました;; 全体の 9!しかわからないです。

関連するQ&A