ベストアンサー 1/√(4x-x^2)の積分がわからず困っています。 2008/02/05 16:11 1/√(4x-x^2)の積分がわからず困っています。 分母を置換してもよくわからないです。 教えてください、お願いします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー proto ベストアンサー率47% (366/775) 2008/02/05 16:52 回答No.2 まずルートの中を平方完成 4x-x^2 = 4-(x-2)^2 x-2=yと置いて置換 ∫dx/√(4-(x-2)^2) = ∫dy/√(4-y^2) ルートの中を因数分解 ∫dy/√(4-y^2) = ∫dy/√((2+y)(2-y)) 1/(2+y)を括り出す ∫dy/√((2+y)(2-y)) = ∫{1/(2+y)}・√((2+y)/(2-y))dy z=√((2+y)/(2-y))と置くと y = -2(1-z^2)/(2+z^2) dy/dz = 12z/(2+z^2)^2 1/(2+y) = 1/(2-2(1-z^2)/(2+z^2)) = (2+z^2)/(2(1+2z^2)) これで置換をするとzについての有理関数になる。 あとは分母を2次以下に因数分解して、部分分数展開して項ごとに積分。 質問者 お礼 2008/02/05 17:10 わかりやすい回答解説ありがとうございます。 結構、面倒くさいですね。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) KappNets ベストアンサー率27% (1557/5688) 2008/02/05 16:49 回答No.1 公式集では「2次無理関数」の積分というところに分類されています。 x=u+2 とおくと 1/√(4x-x^2)=1/√(4-u^2), dx=du となります。u=2*sin(t) とおくと du/√(4-u^2)=[2*cos(t)*dt]/√[4-4*{sin(t)}^2]=dt となります。積分すると t となります。t を x に戻します。 質問者 お礼 2008/02/05 17:11 スタイリッシュな回答ありがとうございます。 かっこいいやり方ですね。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 不定積分の求め方。 (1)1/(4x^2-1) (2)1/(x^2+x+1) (3)x^2/(x^2+1)(x^2+4) の三つのです。 (1)では全くやり方が浮かびません。置換積分にしてもxが残ってしまうし、割ってもだめでした・・。 (2)は分母を(x+1)^2-xとして、置換積分をしてもダメでして・・。一体どうすれば? (3)も同じ理由です。 分母の方が次数が大きい場合の不定積分はどうすればいいのでしょうか? 置換積分 おそらくは置換積分の問題だと思うのですが、 ∫x/(1+x^4)dx (積分範囲[0,1]) をどう置換していいかわからないのです。 1+x^2の形はtanθ、1-x^2の置換はsinθで置くというのは定石ですが、このように次数が大きい場合はどうすればよいのでしょうか。 部分分数展開も分母が1+x^4では使いにくいですし、なにかよい方法があれば教えていただきたいです。 よろしくおねがいします。 1 / (x^2+1)^(3/2)の積分について 1 / (x^2+1)^(3/2) の積分なのですが、これはどのように解いたら良いのでしょうか? 置換積分法で解こうとしても解けませんでしたし、部分積分法でもいまいち分かりませんでした。 ちなみに答えは x / (1 + x^2)^(1/2) + C となっていました。 どなたか解説よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学の積分です。 1/(x-x^2)^(1/2)‐(1) 上式を置換積分する場合、なぜ最初に分母を (x-x^2)^(1/2) =(1/4-(x-1/2)^2)^(1/2) =1/2*(1-(2x-1)^2)^(1/2) と変換し、 2x-1=t と置換する必要があるのでしょうか? (1)の段階で 分母:(x-x^2)^(1/2)をtと置換して計算するのは なぜ解が求まらないのでしょうか? →解:sin(2x-1)^(-1) 詳しい説明をお願いします。 定積分を求めようとしています。 定積分を求めようとしています。 S(1-0){ x^2・(1-x^2)^1/2}dx を求めようとしています。(分かりづらいですが、区間1-0におけるx^2・(1-x^2)^1/2の積分) 部分積分や置換積分など色々使って計算したのですが、 手元の計算では、 積分結果が -2/3(1-x^2)^3/2 + 2/15(1-x)^5/2*1/2xとなって、分母にxが出てしまい、 結果値は∞と発散してしまいます。 多分単純な計算ミスだと思うのですが、計算方法をご教授願います。 x^xの積分の正式な求め方 x^xの積分の求め方で、exp(-k)置換積分法(正式にはどういうのかしりませんので私がかってに呼んでるだけですが・・・)で求めたら(x^2) logxになりましたが,どうも置換積分法にたよりすぎている気がします。 これ以外の方法はどういうのがあるでしょうか?webを見ても探しきれませんでした。 頭のリフレッシュということで30年ぶりに数学を再勉強中です。よろしくおねがいします。 A) 置換積分法によるx^x積分 x^x=exp(-k) 以下e(-k) で置換 x=e(-kx^-1), k=-log(x^x)=-xlog(x) なので ∫x^x dx = ∫e(-k) de (-kx^-1)/dk dk = ∫e(-k) (-xde(k)) dk = -∫xe(0) dk = -xk k=-xlog(x) なので ∫x^x dx = (x^2) logx sin(π/2)x^2をxで積分したい sin(π/2)x^2の積分をしたいのですが、x^2の処理がわかりません。 置換積分ではないようなので部分積分なのかなとは思うのですが。 どなたか教えていただきたいです。 積分 integrate(((1-x^2)^(1/2))/x, x); について 積分 ((1-x^2)^(1/2))/x)dx の計算方法を教えてください。 (1-x^2)^(1/2)をtとおいて置換積分したのですが途中で進まなくなってしまいました。 ∫1/x√(x^2+1) の積分について。 ∫1/x√x^2+1を積分しろ という問題があるのですが、解答をみると √(x^2+1)=t-x と、置き換えて積分していくのですが、僕は √(x^2+1)=t とおいて積分したのですが、これでは出来ないのでしょうか? 一応これでも計算はできた(つもり?)のですが、解答と答えが違っていたのでどこかで、ミス(思い違い?してはいけないことをした?)があったのかと思うのですが…。 答えは log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}| です。 僕の置換の方法でやると、 1/2log|√(x^2+1)-1/√(x^2+1)+1| です。 ∫1/(x^2+1)^2 の不定積分がわかりません ∫1/(x^2+1)^2 の不定積分がわかりません 答えは ( 1/2 )*( (x/(x^2+1)) + tan-1(x) ) となるようですが、過程がまったくわかりません。 部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。 見づらく申し訳ありません。画像を参照していただければと思います。 よろしくおねがいします。 三角関数の積分について ∫1/(sinx)^3dx これを置換せずに積分することは可能でしょうか? 似た形で、例えばチャートには ∫1/sinxdx これを置換積分を利用して解いていましたが、実際分母分子にsinxをかけた後分母の1-(cosx)^2を部分分数分解すると分かれた二項がともにf'(x)/f(x)の形になり、きれいに [1/2log(1-cosx)/(1+cosx)] とすることが出来ました。同様にして3乗でも出来ると思ったのですが途中で詰まってしまいます。3乗になるとまた話が別なのでしょうか?アドバイスお願いします! 定積分の置換積分について 定積分の置換積分について 分からないところがあるのでよろしくお願いします。 下の画像の定積分の問題なのですが、置換積分のところです。 ここでぼくは、 x = 2sinΘ とおいて考えたのですが、これに置換積分の公式を使って解こうとすると、 x = √3 のときの Θ の値は π / 3 か 2π / 3 のどちらを取ればいいのか分かりません・・。 この Θ の値を決定するための条件のようなものが他にあるのでしょうか? それとも、 x = 2sinΘ と置いて置換しようとするのが間違っているのでしょうか・・? できれば、正答とその過程も合わせて教えてほしいです。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム x/(a^2+x^2)の積分について x/(a^2+x^2)の積分について t=a^2+x^2とおいて dt=2xdx よって ∫(x/(a^2+x^2))dx=(1/2)*∫(1/t)dt=(1/2)*log(t)+C と置換積分により積分することが出来ますが、 部分積分では計算できないのでしょうか? (a^2+x^2)'=2x ∫(x/(a^2+x^2))dx=(1/2)*∫[(1/(a^2+x^2))*(a^2+x^2)']dx として計算できると思ったのですが、うまく行きません。 どなたかアドバイス頂けたら幸いです。 不定積分∫log(1+x)/x dxが分かりません 不定積分∫log(1+x)/x dxが分かりません。教科書(理工系の微分積分学:学術図書出版)を読み漁ったのですが、見つかりませんでした。部分積分と、置換積分を考えてみて計算したのですが、私のやり方では両方うまくいきませんでした。(参考書としては、マセマの微分積分学の本を持っています。) 置換積分:1+x=exp(t)と置換する。(与式)=∫texp(t)/exp(t)-1 dtとなりうまく計算できません。 それともこれは何かでうまくはさんで解くタイプの問題なのでしょうか?(ハサミウチの原理などを利用) 大本の問題は広義積分の問題で、積分区間は、-1→1となっています。 何か知っていることがありましたら、教えてください。よろしくお願いします。 この積分が出来なくて困っています この積分が出来なくて困っています ∫x^4logXdx (積分区間は1→2の定積分です) 置換積分法が使えると思い、置換したのですが x^4を置換するか、logXを置換するのかがわかりません。 回答を見ると、32/2log2-31/25になるんですが 解法の指針もわかりません。 出来れば、どのように解くかの手順も教えてください。 回答宜しくお願いします。 x/(x^4 +1)の積分 自分の回答では置換積分法を使う事で log|x^8 +1| /2 と出たのですが、回答には arctanx^2/2 と記されていました。 頭の悪い私には「なんで急にarctanが出てて来たの!?」という感じで非常に混乱しています。 誰か教えて頂けませんでしょうか? ある積分の問題∫x/x^4+x^2+1dxについて ∫x/x^4+x^2+1dx という問題についてなのですが、解答では分母を (x^2-x+1)(x^2+x+1) に変形して部分分数分解して、tanの逆三角関数に…という手順を取っているのですが、これとは違い、分母を 3/4+(x^2+1/2)^2 という具合にして、部分分数分解を行わず、直接tanの逆三角関数に積分する、という手順は不可能でしょうか? 置換積分による定積分 お世話になっております。数学3の定積分からの質問です。 教科書の基本的な説明の理解でうろうろしているのですが、その中で些細な疑問があります。 置換積分による不定積分を求める方法と置換積分による定積分を求める方法の考え方です。 これらは基本的には同じことですよね? 教科書では、xをtやらuやらで置換したときに、xとt(u)の対応を考えてから、t(u)のときの下端と上端を積分記号に与えていますが、 例えば、始めは下端と上端を考えないf(x)の不定積分F(x)を置換で求めてから、xの下端上端を考えて定積分の値を求めるのも方法としては間違いでは無いと思うのですが、如何なものでしょうか。 置換積分法による定積分は、煩雑さが解消できるというメリットがあるのかなぁという印象です。 本当に些細な疑問です。ちょこっとコメント下されば幸いです。 積分 4π∫1-cos(2x-π/3)/2dx を積分すると 4π[x/2-(sin(2x-π/3))/4] になるそうですが どうしてそうなるかおしえてください 分母が2だから2を積分すると0だから すべて0になると思うのですが 積分計算 ∫{-∞,∞} (x^2)/(coshλx) dx = (Δx)^2 について 次の積分を求めよ。 ∫{-∞,∞} (x^2)/(coshλx) dx = (Δx)^2 という問題なんですが、 複素積分を用いて解く場合、どういう経路を選択すればいいんでしょうか? また留数定理を使う場合、分母が0になるx=π/2λが特異点で正しいのでしょうか? あと右辺の(Δx)^2をどう扱えばいいのかも分かりません。 どなたか分かる方よろしくお願いいたしますm(__)m また、 (√2π)/2λ ∫{-∞,∞} (p^2)/{cosh(π/2λ)} dp = (Δp)^2 の積分方法に関してもアドバイスを頂けるとありがたいです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
わかりやすい回答解説ありがとうございます。 結構、面倒くさいですね。