ベストアンサー (n!)!は(n!)^(n-1)!で割り切れる 2007/11/28 15:22 (n!)!は(n!)^(n-1)!で割り切れる このことを数学的帰納法で示そうと思ったのですが、うまくいきません。 どのように示せばよいでしょうか? みんなの回答 (4) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Tacosan ベストアンサー率23% (3656/15482) 2007/11/29 18:17 回答No.2 おまけ: 「帰納法を使う」理由はなんでしょうか? 帰納法を忘れてしまえばいろいろと方針はありますけど.... #1 で書いたことを使ってもいいですし, もっと直接的に (Σ(i: 1→(n-1)!) x[i])^(n!) における Π(i: 1→(n-1)!) x[i]^n の係数が (n!)! / (n!)^((n-1)!) で, これは (展開式を考えればほぼ明らかに) 整数でなきゃならないとかやってもいいし. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (3) Tacosan ベストアンサー率23% (3656/15482) 2007/11/29 22:19 回答No.4 あ~, 気兼ね不要です>#3. どうしても帰納法を使うなら, 「連続する n個の整数の積は n! の倍数」を帰納法で証明してみます? なんか変ですが. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 kumipapa ベストアンサー率55% (246/440) 2007/11/29 19:47 回答No.3 おまけのおまけ? 帰納法、確かにかえってややこしくないですか? #1さんのお話が分かりやすいです。 連続する n 個の整数の積は n! の倍数 ∵ k≧1, k・(k+1)・(k+2)...(k+n-1) = (k+n-1)!/(k-1)! = (k+n-1)C(k-1) × n! ということで、連続する 2n 個, 3n個 ...の整数の積は (n!)^2, (n!)^3,... の倍数。 (n!)! は、1 から n! までの連続する n! (= (n-1)!×n )個の整数の積なので・・・ で、宜しいでしょうか。 (#1さん、勝手におまけしちゃってごめんなさい) 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2007/11/28 15:38 回答No.1 えっと, 帰納法は必要ですか? 「連続する n個の整数の積が n! の倍数である」ことで十分だと思うんですが.... 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 2^n>n^n 2^n>n^nが成り立つ自然数の範囲を示せ。一応k>2、4<kとでましたが、それを数学的帰納法でしょうめいするように言われたがわかりません。おしえてください。 f(n)=(1)^n+(2)^n+(3)^n+(4)^n nは自然数 f(n)=(1)^n+(2)^n+(3)^n+(4)^n f(n)を5で割った余りをr(n)とする。 (1)r(n)は g(n)=(1)^n+(2)^n+(-2)^n+(-1)^n を5で割った余りと等しいことを示せ。 (2)r(n)=0を満たすnをすべて答えよ。 (1)は f(n)-g(n)=5t と置いて、数学的帰納法で解くのが良いのでしょうか? f(n)-g(n)=(3)^n+(4)^n-(-2)^n-(-1)^n=5t n=1のとき f(n)-g(n)=3+4+2+1=10 → OK n=kの時成立すると仮定して n=k+1の時 (3)^(k+1)+(4)^(k+1)-(-2)^(k+1)-(-1)^(k+1) =(3)^(k+1)+4{5t-3^k+(-2)^k+(-1)^k}-(-2)^(k+1)-(-1)^(k+1) =-3^k+20t+6(-2)^k+5(-1)^k ここで -3^k+6(-2)^k を帰納法で5の倍数と証明して f(n)-g(n)=5t と証明できる。 他の証明方法はないのでしょうか? (2)はどのようにすればよいか分かりません。 教えてください。 お願い致します。 nを自然数とするとき、n^5/5+n^4/2+n^3/3-n/30が自然数であることを証明せよ。 高校数学の教科書の数列のところの一番最後の一番難しい章末問題で nを自然数とするとき、n^5/5+n^4/2+n^3/3-n/30が自然数であることを証明せよ。 って問題なんですが、とりあえず数学的帰納法で解くんだろうけど全然解けそうにないです。 月曜日までにやってこないとやばいので、だれか助けてください!! 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 8^nー7nー1が49の倍数である証明をせよ。 8^nー7nー1が49の倍数である証明をせよ。 途中までも正しいのか?正しい証明方法を教えてください。 …8^k+1ー7kー7ー1 数学的帰納法として k=1?2^n≧n/2+1 k=1?2^n≧n/2+1 を証明せよ。 という問題で、解答は数学的帰納法で証明しているのですが、どうしてn=0のときを示さなくてもいいのでしょうか? 2^nにおいてn=0とすると1となるから、このときも調べないといけないのでは?と思うのですが… どなたか教えてくださいm(__)m Σの表記の仕方がわからないため、おかしな書き方になっていたらすいません。 (1+h)^n≧1+nh+{n(n-1)/2}h^2 h>0のとき(1+h)^n≧1+nh+{n(n-1)/2}h^2 これを示すのに「右辺は二項定理で展開して昇べき順で並べたときの最初の3項」ってことでは証明になりませんか? 数学的帰納法でしょうか? あと、0<x<1のときlim[n→∞]nx^n=0 を先の不等式を用いて示せという問題がわかりません。 一見明らかにみえますけど。 n(n-1)-5=1? お世話になってます。数学なんですが・・・よくわからないので質問させてください。 p=n^2(n-1)^2-25は・・・(pは素数) {n(n-1)+5}{n(n-1)-5}で n(n-1)+5=n^2-n+5=(n-1/2)^2+19/4になるみたいなんですが、 なぜ最後に19/4になるのかがわかりません。 スラッシュは、割るという意味ではなく分数を表しています。 数学に詳しい方ぜひ教えてください。 Sum(n)=1/2n(n+1)の証明 帰納法による証明の例で出てきた式ですが Sum(n)=1/2n(n+1)がSum(n+1)=Sum(n)+(n+1)となり Sum(n+1)=1/2n(n+1)+(n+1)を整理すると Sum(n+1)=1/2(n+1)[(n+1)+1]を得る。 とありましたが、整理する途中式が分かりません。 どうか教えて下さい。 nが整数のとき、n^2が素数aの倍数ならばnはaの倍数である、は真ですか? 数学の問題を解いていると、nが整数のとき、 n^2が3の倍数⇔nは3の倍数 を証明せよ n^2が5の倍数⇔nは5の倍数 を証明せよ という問題がありました。 そこで、質問タイトルにあるように、 「n^2が素数aの倍数⇔nはaの倍数」 は成り立つかな?と思って証明しようと思い、 必要は明らかなので十分について 対偶を取って数学的帰納法で証明しようとしたのですが、うまくいきませんでした。 そもそもこの命題は真なのでしょうか。真なのでしたら、 出来るならば高校数学の範囲で証明を示してもらえないでしょうか。 漸化式 a_n = (n+1)a_(n-1) - (n+1)a_(n-2) +1 の解き方 漸化式が解けなくて困っています. (漸化式): a_n = (n+1)a_(n-1) - (n+1)a_(n-2) +1 (条件) : a_1=1, a_2=4 この漸化式を解く方法,または,そのヒントをどなたか教えていただけないでしょうか? 出来れば,高校生が分かるレベルでの解法でお願いします. あと,係数に変数が入っている漸化式は,数学的帰納法を使えない場合,一般的にどうやって解けばいいのでしょうか? よろしくお願いします. 証明: n≧4のとき、2^n<n! 次の等式を証明せよ。 n≧4のとき、2^n<n! という問題があったのですが、これを帰納法を使わないで証明を与えるとするなら、どのような方法が考えられますか? できれば参考書的でないものがいいのですが・・・。 チャートでは 2^n<n!⇔n!/2^n>1 と変形して解いていました。 きれいな形をしているだけにさまざまな方法があると思いますがどなたかご教授ください。 数学的帰納法 n^2≧n (nは整数)の証明 数学的帰納法 n^2≧n (nは整数)の証明 n=1 のとき 1≧1 より成り立つ n=k のとき k^2≧k ... -k^2≦-k ... 1 が成り立つと仮定すると n=k+1 のとき (k+1)^2≧k+1 k^2+2k+1≧k+1 k^2≧-k 1より k^2≧-k^2 k^2 は正数だからこれは左辺は正数、右辺は負数になる。したがってこれは成り立つ 私なりにやってみたのですがこれでどんな自然数nについても証明はできているでしょうか。 また、負数に関しての証明の方法をご教授願います。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム lim(n→∞) (1-1/n)^nの求め方。 lim(n→∞) (1-1/n)^nの求め方を教えてください。数学が苦手なのでなるべく丁寧に教えていただけると嬉しいです。よろしくお願いいたします。 【問題】箱に2個の赤いボールとn-2個の白いボールが入っている。(n= 【問題】箱に2個の赤いボールとn-2個の白いボールが入っている。(n=3,4,5,・・・) (1)略 (2)箱から3個のボールを取り出すとき、2個が白、1個が赤となる確率をP(n)とおく。このとき、P(n)={6(n-3)}/{n(n-1)}であることを証明せよ。ただし、どのボールも取り出される確率は等しいとする。 (3)P(n)-P(n+1)を求めよ。 (4)p(n)が最大になる確率を求めよ。 (2)からわかりません^^; 数学的帰納法を使おうとしてn=3のとき成り立つ。として、次にn=kのとき成り立つと仮定して、n=k+3のとき成り立つことを示そうとしたのですが。。。できません^^; どなたかよろしくお願いします。 2^(n-1)とn!との大小関係 2^(n-1)とn!との大小関係を調べたいのですが、 帰納法ではなく、2項定理で簡単に証明できるような気がするのですが、自力でできずに困っています。 ヒントだけでもいいので教えてください。 よろしくお願いします。 6分の1n(n+1)(2n+1)-2n(n+1) 6分の1n(n+1)(2n+1)-2n(n+1)が何故6分の1n(n+1){(2n+1)-12}になるのかが分かりません。回答お願いします! 1^2+2^2+3^2+・・・+n^2=n(n+1)(2n+1)/6 1^2+2^2+3^2+・・・+n^2=n(n+1)(2n+1)/6 となりますが、これを図形を用いて証明することはできないのでしょうか? どなたかよいアイディアがあれば教えてください。 急ぎです゜(゜´Д`゜)゜ 数学的帰納法の問題です(´;ω;`)わかりません… 問題 (n+1)(n+2)(n+3)・…・(2n)=2のn乗1・3・5・…・(2n-1)を数学的帰納法で証明せよ というものです。 無理をいいますが今日中にお願いしたいです(´;ω;`) どなたか優しい方、よろしくお願いいたします゜(゜´Д`゜)゜ Σ[n=0..∞](-1)^n5^n/(2n)!の和は? Σ[n=0..∞](-1)^n5^n/(2n)!の収束・発散を判定し,収束ならその和を求めよ。 という問題です。 これは交項級数なので数列{5^n/(2n)!}が単調減少且つlim[n→∞]5^n/(2n)!=0より (∵比を採ると5^(n+1)/(2(n+1))!/5^n/(2n)!=2/((2n+2)(2n+1))で単調減少且つ極限値が0) Σ[n=0..∞](-1)^n5^n/(2n)!は収束。 となるのかとと思いますが和はどのように求めればいいのかわかりません。 どのようにして求めれるのでしょうか? 数学的帰納法について 数学的帰納法の証明問題なんですけど 任意のnに対し (1+2+3+・・・+n)(1+1/2+1/3+・・・+1/n)≧n**2 が成り立つことを数学的帰納法によって証明せよ。 です。よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など