2次元単純ランダムウォークは原点にいつ帰ってくるか?
原点スタートの2次元単純ランダムウォークを考えます。すなわちX_iを独立同分布でそれぞれ確率1/4で(±1,0),(0,±1)のいずれかのベクトルを取る確率ベクトルとし、S_n=X_1+X_2+…+X_nとします。S_nを2次元単純ランダムウォークと呼ぶことにします。n>0のとき初めてS_n=0となったとするとき、H=nとおきます。Hを原点への最初再帰時刻(あるいは最初到達時刻)と呼ぶことにします。P(H<∞)=1、E(H)=∞がよく知られています。つまりいつかは必ず帰っては来るものの、その期待値は∞だということです。これらのことは大抵の確率論の本には書いています。そこで最初再帰時刻Hの分布を知りたいと思いました。時刻2nにしか戻らないので、P(H=2n)はいくらか?という問題といってもいいです。
このことは組み合わせ論の問題だと考えられます。つまりZ^2格子上で原点からスタートした長さ2nの道で、最初と最後以外に原点を通らないものは何通りあるか?という問題と同値です。もし途中で原点を通ってもよいのであれば、その道の本数は4項分布を用いて簡単に書き下せます。つまりi回右に、i回左に、j回上に、j回下に動いたとして、i+j=nであればよいので、Σ_{i+j=n}(2n;i,i,j,j)(1/4)^{2n}とかけるわけです。ただし(2n;i,i,j,j)=(2n)!/{i!i!j!j!}は4項係数とします。2n回目で初めて原点に戻ってくるというのは、2n回目に原点にいるような道から、2k回目に初めて原点に戻ってきて、その後2(n-k)回で原点に戻ってくる(この間は何回戻ってもよい)ような道の数をk=1~n-1まで引いてやればいいですから、p_n:=P(H=2n)の満たす漸化式を導くことは容易です。しかしそれが4項係数の和を含み、またp_nを決めるのにp_1~p_{n-1}の情報が全部いるという難解なものです。うまい数え方を見つけてp_nを簡単に表すよい方法はないものでしょうか?ちなみに1次元では簡単に解けましたが、同じ方法では出来そうもありませんでした。
お礼
ありがとうございます。 ご紹介いただいた最初の文献を当たってみたいと思います。 予断ですが、もはやミルの文章力にはもはやまったく期待しません。 あれだけの悪文を書く人でありながら、歴史的に評価される名作を著したという事実。個人的には信じがたい奇跡だと思います。