• 締切済み

回転移動した平面の方程式

右手系座標での平面 z = 0 を 方位角 φ ( y 軸正方向から見て時計回りを正とする)、 仰角 θ ( x 軸正方向から見て反時計回りを正とする)で 回転させたときの方程式はどのようになりますか。 2つの方法で方程式が一致しないので、 混乱しています。 方位角 φ の座標変換 x' = x cos φ - z sin φ z' = x sin φ + z cos φ 仰角 θ の座標変換 y' = y cos θ + z sin θ z' = - y sin θ + z cos θ 方位角 φ, 仰角 θ の座標変換 (←この辺りから間違っている?) x' = x cos φ - z sin φ y' = x sin φ sin θ + y cos θ + z cos φ sin θ z' = x sin φ cos θ - y sin θ + z cos φ cos θ 方法1 回転後の平面は z' = 0 であるから、平面の方程式は x sin φ cos θ - y sin θ + z cos φ cos θ = 0 方法2 平面 z = 0 の単位法線ベクトル n は (0, 0, 1) である。 座標変換の式にこれを代入すると、回転後の n は ( - sin φ, cos φ sin θ, cos φ cos θ ) であるから、n に垂直で原点を通る平面の方程式は - x sin φ + y cos φ sin θ + z cos φ cos θ = 0 回転放物面 z = ( x^2 + y^2 ) / ( 4 f )についても 方程式を得たいので、よろしくお願い致します。

みんなの回答

回答No.1

>方法1 回転後の平面は z' = 0 であるから、平面の方程式は x sin φ cos θ - y sin θ + z cos φ cos θ = 0 z'=0 とおくのではなくて、z=0と置くのが正しいです。

関連するQ&A