lim[x→∞]f(x)の位相での定義は?
よろしくお願い致します。
『0<∀ε∈R,0<∃δ∈R;0<|x-a|<δ⇒|f(a)-f(x)|<ε』
は
『2つの位相空間(X, T)、(Y, S) と map f;X→Y と
L:={b∈Y;∀ε∈nbhd(b),∃δ∈nbhd(a) such that
f(δ)⊂ε}(a
∈X)に於いて、
L≠φ の時、f(x)はLに収束するといい
limf(x):=L
x→a
と表記する。そして、L=φの時、f(x)は発散すると言う』
という具合に一般で定義できると思います。
『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や
『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』
に就いては、
『Bは位相空間(X*,T*)の部分集合Aの開被覆である』
の定義は
『T* の部分集合Bに於いて、A⊂∪[b∈B]b』
『位相空間(X*,T*)の部分集合Aはコンパクトである』
の定義は
『X*
の部分集合Aの任意の開被覆B(⊂T*)に対し、∃{b1,b2,…,bn}
⊂B (n∈N) such that A⊂∪[i=1 to n]bi』
『位相空間(X*,T*)はコンパクト空間をなす』
の定義は
『位相空間(X*,T*)の部分集合X* はコンパクトである』
『位相空間(X,T)が位相空間(X*,T*)の中で稠密である』
の定義は
『X⊂X* 且つ φ≠∀A∈T* に対して,A∩X≠φ』
『位相空間(X*,T*)は位相空間(X,T)のコンパクト化である』
の定義は
『X* はコンパクト空間 且つ XはX* の中で稠密である』
従って、『x→∞』の定義は『xをa∈X* に近づける』を意味す
るので
εとδを使うと、
2つの位相空間 (X,T)、(Y,S) と map f: X → Y があり、位
相空間(X*,T*)は(X,T)のコンパクト化である時、
L:={b∈Y;∀ε∈nbhd(b,(Y,S)),∃δ∈nbhd(a,(X,T)) such that
f(δ)⊂ε}(a∈X*)に於いて、
L≠φ の時、f(x)はLに収束するといい
lim f(x):=L
x→a
と表記し、
L=φの時、f(x)は発散すると言う。
例:実数体RではX*はR∪{+∞,-∞}に相当し、a∈{+∞,-∞}
と定義してみたのですが、
どんな位相空間(X,T)やコンパクト化(X*,T*)では良いという訳ではなく、
夫々に何らかの条件を付け加えねばならないような気がします。
どのような条件を付ければ
『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や
『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』
の一般での定義が完成しますでしょうか?
お礼
ありがとうございます。ただもちろん第一、第二可算公理は満たしていない例のことで質問させていただきました。ちなみに逆のパターン(コンパクトではあるが点列コンパクトではない例)は見つかりましたが未だ質問の例は見つかりません。