ベストアンサー 二次方程式の解の公式が実数解なしの場合について 2023/07/23 09:34 模試などの記述で二次方程式の解の公式のルートの部分√b^2-4acの中身が負の時に、そのまま実数解なしと書いてしまっても良いのでしょうか?よろしくお願いします みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー nihonsumire ベストアンサー率26% (852/3181) 2023/07/23 09:36 回答No.1 はい。 通報する ありがとう 1 カテゴリ 学問・教育数学・算数 関連するQ&A 2次方程式の解の公式 こんばんは。ただいま新課程「数(2)」啓林館の高次方程式の「解の公式・判別式」の部分の学習指導案を書いています。単元設定の理由という部分がうまく書けません。「今までは実数の範囲で考えていたため2次方程式の解の公式ではb^2-4acが0以上の時実数解を持ちb^2-4acが0未満のとき実数解をもたなかった。今ここで複素数の範囲まで数を拡張するとb^2-4acが0未満のとき虚数解をもち,2次方程式は常に解を持つことを理解させる」また「判別式を用いると直接解を求めなくても解の種類がわかったり、2次関数とx軸の位置関係がわかることを理解させる」としましたがしっくりしません。アドバイス等をお願いします 二次方程式で実数解が無いとは解が無いとは言ってない y=ax^2+bx+cの二次方程式の話ですが、解の公式のb^2-4acでマイナスの数になるとルートが取れなくて「実数解なし」ってなりますよね。 でも、実数解が無いって言ってるだけで本当は解があるのかなぁ・・・、と疑問です。 なんだかiとかって虚数?があるのは知ってますが、そういうので何か実数ではない解が出せるのでしょうか。仮に出せるとして、それはいったいどういう意味を持つのですか。 数学は中3~高1レベルだと思いますm(_ _)m 計算方法はそんなに理解できないと思うので本質が気になっています。解とは何?とか。 2次方程式の異符号の実数解 xの2次方程式 ax^2+bx+c=0 で ac<0のとき、異符号で2つの実数解をもつことを証明したいのですが・・・ 実数解を2つ持つことについては、 ac<0 なので 4ac<0 よって判別式D=b^2-4ac>0となるからと考えたのですが、 実数解が異符号になる理由がわかりません。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 方程式と実数解 a,bは実数とする。2次方程式(a+i)x^2+(b-3i)x+12-4i=0が異なる実数解をもつとする。このとき方程式の解とa,bの値を求めよ。 解の判別を使っても、虚部と実部に分けて考えても解けなかったのですが、解とa,bの値の両方を求める問題はどうやって解けばいいのでしょうか? 2次方程式 実数解 xについての2次方程式 x*-(2a+k)x+2ak-1=0 で、a,kが実数、a>0のとき、次の問いに答えよ。 問)この方程式が負でない2つの実数解α、βをもつとき、α+βの最小値を求めよ。また、このときのa,kの値を求めよ。 わからなくて困っています 教えてくださいお願いします(´;ω;`) 2次方程式の実数解 3つのxの2次方程式 ax^2+bx+c=0 bx^2+cx+a=0 cx^2+ax+b=0 があるとき、 3つの方程式のうち、すくなくとも1つは実数解をもつことを証明せよ。(ただし、a, b, cは0以外の実数) という問題なのですが、a,b,cの大小関係から判別式を使って考えてみたのですが、うまくいきません。 3次方程式の解法(カルダノの公式) 現在、3次方程式をカルダノの方法で解いているのですが、 以下に示すURLにある一文の、 「カルダノの公式を用いると x3 + p x + q = 0 という三次方程式は 式A(何故かコピペできません・・・仮に式Aとします) の時に負の数の平方根が現れる。これは、この方程式の判別式 D = − (4 p3 + 27 q2) > 0 と同値な条件であり 3 つの異なる実数解を持つ条件である。実数解しかないのにも関わらず、カルダノの公式では負の数の平方根を経由する必要がある。カルダノは負の数の平方根を計算に用いることはあったものの、それらの場合は不可能で役に立たないものと考えていた。」 http://ja.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B%E5%BC%8F なぜ、式Aでは平方根の中がマイナスになり複素数がでてくるのに、実数解を持つ条件なのか理解できません。 上のD>0と同値な条件というのもなんだか納得いきません。どなたか教えていただけませんか? の意味が理解できません。まず、 2次方程式の解の公式。 宜しくお願い申し上げ致します。 2次方程式ax∧2+bx+c=0の解の公式の求め方がイマイチ分かりません。 平方完成して、其れを外した以下の所から分かりません。 x+b/2a=±√b∧2ー4ac/4a∧2 x+b/2a=±√b∧2ー4ac/±√4a∧2 x+b/2a=±√b∧2ー4ac/±√(2a)∧2 x+b/2a=±√b∧2ー4ac/±|2a| 此処から、右辺の分母、±|2a|、の、処理の仕方が分かりません。 何方か是非是非宜しくお願い申し上げ致します! 二次方程式 解の公式 証明の計算方法 参考書を眺めていて、ふと思ったのですが、 b'²-ac>=0の時の二次方程式の解の公式の証明で、 記載が大変なので分子の部分だけを記載しますが、 -2b'+-√(2b')²-4acが、 どの様な計算手順を経て -2b'+-2√b'²-acになるのかがどうも解りません 平方根の計算が解っていないのが原因と思いますし、、 計算手順と言って良いのかも解りませんが、 -2b'+-√(2b')²-4acは、 どの様な計算手順を経て -2b'+-2√b'²-acになるのでしょうか? 3次方程式の解の公式を教えて下さい 数学の3次式の因数分解の授業で因数定理を習いました。 しかし数字を直感で代入して求めることがどうしても納得出来なくて数学の先生に聞いたら「3次方程式の解の方程式に当てはめれば納得出来ると思うよ」と言われました。 その時は時間がないのと、高校数学では難しいと言われ3次方程式の解の公式を教えてもらうことは出来ませんでした。 なので3次方程式の解の公式が知りたいです! わかる方教えて下さい。 5次方程式のべき級数を使った解法? まず、2次方程式の解の公式 {-b±√(b^2-4ac)}/2a ですが、それをべき級数を使って書くには、概要は次のようにできると思います。 文字aについてべき級数を使って書く場合。 |b^2|>|4ac|のとき、 √(b^2-4ac) = b*√(1-4ac/b^2) とし、ニュートンの一般化した二項定理で、aについて展開します。 |b^2|<|4ac|のとき、 √(b^2-4ac) = √(-4c)*√(a)*√(1-b^2/4ac) とし、三つ目のルートをニュートンの一般化した二項定理で、aについて展開します。 ただし、aについて、負のべきの無限級数になります。 二つ目のルートにおいては、a^(1/2)が残ったままです。 一つ目のルートにおいては、実数の場合も虚数の場合もあります。 とにかく解は、aの半整数のべきの無限和でかけます。 文字bについても、文字cについても同様です。 そう考えると、5次方程式のべき級数を使った解法もあると思いますが、なんらかの文献や情報があれば教えてください。 特に外国の文献に関してを希望します。 2次方程式の公式で 2次方程式の解の公式は 2a分の-b+-√b^2-4ac なんですが xの係数が偶数の時の公式は a分の-b`+-√b`^2-ac なんですがb`の読み方がよくわかりません。 意味についてはbが4だとしてその係数を 半分? にしてb`=2にしたという事はわかります。 これで合ってますでしょうか? あと-b`の読み方がわからないので教えていただけれ幸いです。 2次方程式が実数解を持つ範囲 こんばんは、宜しくお願いします。 2次方程式 x^2-(8-a)x+12-ab=0が定数aの値に関わらず実数解を持つときの定数bの範囲を求めよ。 まず、実数解とあるので重解でもよいから判別式D≧0ですよね。 それで、D=a^2+4(b-4)a+16ですね。 ここで、ここからの進め方が分らなかったので答えを見ると、 ”aの2次方程式=a^2+4(b-4)a+16の判別式を新たにDaとおくとD≧0となる条件はDa/4≦0でなければいけない。”とあるのですが、わからないです。 なぜDa/4≧0ではなくDa/4≦0なのでしょうか? よろしくおねがいします。 2次方程式の解の符号 2次方程式x^2+2(a-3)x-a+5=0が、次のような2つの解をもつように、実数aの値の範囲を定めよ。 (1)2つの解(重解を含む)がともに正 で、 x^2(a-3)x-a+5=0・・・(1) α+β=-2(a-3),α+β=-a+5・・・(2) で、 D/4=(a-3)^2+5≧0 となるのですが、解の公式ってD/4=b^2-acじゃないですか。(a-3)が^2されているので(1)の式の(a-3)が解の公式のbになる。でも、そうするとD/4=(a-3)-x^2・(-a+5)で答えと一致しません。 何が違うのでしょうか。教えて下さい(>_<) 二次方程式の解の公式について。 高校の教科書には二次方程式の解の公式が出来るまでには 何年もかかった。 という感じで、現在知られているような形になるまでの 色々な形が載っていました。 高校の時は、「数学者って凄いなぁ、きっと試行錯誤で何年もかけて やっと今の二次方程式の解の公式にたどり着いたんだろうな」 と思っていました。 ですが、この間ふと、ax^2+bx+c=0 (aは0でない) をいじくっていたら、簡単に(高校の数学レベルで、)解の公式が でてきました。 そこで質問です。 本当に当時の数学者は解の公式を出すのに何年もかかったのですか? それとも、数学的にきっちりと解の公式を出すためには、 高校レベルの数学じゃない、きちっとした証明が必要なんですか? (高校レベルの数学とは、二次方程式から素直に(x=)の形に 持っていっただけのものです。) 4次方程式の解 x^4-4x-1=0 の実数解と虚数解を求めよ。 因数定理は使えない。 (x^2+ax+b)(x^2+cx+d)=0 と与式をおく。a,b,c,dは実数 展開して、係数を比較すると (1)bd=-1 (2)a+c=0 (3)ac+b+d=0 (4)ad+bc=-4 これから、a,b,c,dを求めてと思いましたが、できませんでした。 (1)から(4)の式から1つの文字だけの方程式はできるが、それが解けない。 かえって、与方程式を解くよりむずかしい。 よろしくアドバイスおねがいします。 実数解 3つの2次方程式は少なくとも1つは実数解を持つことを示す問題です。 だたし、a,b,cは実数とします。 (x^2)+3ax+2b-1=0 …(1) (x^2)+2bx+2c-1=0 …(2) (x^2)+2cx+2a-1=0 …(3) (1)の判別式は D/4=(a^2)-2b+1 (2)の判別式は D/4=(b^2)-2c+1 (3)の判別式は D/4=(c^2)-2a+1 となりましたがどのようにして少なくとも1つは実数解ということを探すのでしょうか? 2次方程式 解の公式の導き方で 中学数学を復習していたのですが 2次方程式ax²+bx+c=0を 解の公式x=-b±√b²-4ac/2a にする問題がありました。その問題を解いていき、 a(x^2+b/ax)+c=0 (x+b/2a)^2=x^2+b/ax+(b/2a)^2 a{(x+b/2a)^2-(b/2a)^2}+c=0 a(x+b/2a)^2-a(b/2a)^2+c=0 a(x+b/2a)^2-b^2/4a+c=0 ここまでは理解できたのですがその次の a(x+b/2a)^2 -b^2-4ac/4aの部分の-b^2-4ac/4aがなぜ-符号になるのかがわかりません。なぜ-b^2+4ac/4aにならないのでしょうか? わかりにくい表記でとてつもなく初歩的なことだと思いますがわかるように回答していただけたらうれしいです。 実数係数の二次方程式の解の条件? 実数係数の二次方程式 ax^2+bx+c=0 (a≠0) において、二つの解をα、βとし、判別式をDとするとき、 (I)「二つの解が共に正」⇔「D≧0, 2解の和>0, 2解の積>0」 (II)「二つの解が共に負」⇔「D≧0, 2解の和<0, 2解の積>0」 (III)「一つの解が正、他の解が負」⇔「2解の積<0」 とあるのですが、 どうして(I)(II)の場合にはD≧0が必要で、(III)の場合にはD≧0は必要ないんですか? 二次方程式の解の配置について aを実数の定数として、異なる二つの実数解をもつ二次方程式x^2+ax+2a^2-8=0がある (1)x=0が一つの解で、他の解が負のときaの値を求めよ (2)少なくとも1つの解が正ならば、なにか<a<なにかである (1)はできたのですが、(2)が分かりません…解答お願いします 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など