ベストアンサー n(n-1)/2の公式の意味を教えて下さい! 2020/12/11 09:09 n(n-1)/2の公式から何が表されますか? 組み合わせの可能性を伝えるときに、この公式を 使っていたのですが、どのような意味なのでしょうか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー asuncion ベストアンサー率33% (2127/6290) 2020/12/11 09:29 回答No.1 異なるn個のものから2個を選ぶ場合の数を求める式です。 質問者 お礼 2020/12/11 10:50 ありがとうございました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 組み合わせ n(n-1)/2の公式の意味 ある団体のメンバーがコラボするときのコラボ数を出すときに、 n(n-1)/2の公式を使って、 メンバーが3人の時は、3通りの組み合わせ、 メンバーが30人の時は、435通りの組み合わせができる というのは、公式の定義として合っていますか? Γ(n+1/2)≒n!/√nの証明 Γ(n+1/2)≒n!/√nを証明する前にΓ(n+1/2)=(2n)!√π/((4^n)・(n!))を証明しました。これとスターリンの公式を使用してΓ(n+1/2)≒n!/√nを導けという問題が出題されたのですが解けなくて困っています。 どなたかわかる方ご指導お願いします。 5を除いたNに対しN(N+1)に25をつけるは誰? 文字的にタイトルが変になってしまいましたが、5の倍数の2乗を求めるときに末尾の5を除いたNに対してN(N+1)の末尾に25をつけると求まるっていう公式はなんか名前とかあるんですか? 例:95^5=9*10の末尾に25=9025 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム n(n-1)-5=1? お世話になってます。数学なんですが・・・よくわからないので質問させてください。 p=n^2(n-1)^2-25は・・・(pは素数) {n(n-1)+5}{n(n-1)-5}で n(n-1)+5=n^2-n+5=(n-1/2)^2+19/4になるみたいなんですが、 なぜ最後に19/4になるのかがわかりません。 スラッシュは、割るという意味ではなく分数を表しています。 数学に詳しい方ぜひ教えてください。 lim{n→∞}(n√n) n√n=(1+λn) (λn>0)(λnはλ*nと言う意味ではありません) が成り立つとき、lim{n→∞}(n√n)が1に収束することを示せ。 と言う問題なんですが、かなり考えたんですが、無理でした。 ヒントには、はさみうちの原理を使えと書いてありますが、どうにもはさめません 1<1+λn は言えますが、「1+λn<」の後になんて書けば良いのかさっぱりです。 ちなみに、ヒントとは思えないんですが、もう1つヒントがあって、それは n√n=(1+λn) ⇔ n=(1+λn)^n です。 事情あってできれば、早くといてほしいです。 どうかお願いします。 数列の公式について 今まで数列のΣの公式を暗記していました。 ところが先生に公式のΣk=1/2n(n+1)はnは項数で(n+1)は(初項の和+末項の和)という意味とおしえてもらいました。 そこでふと疑問に思ったのが、公式のΣk^2=1/6n(n+1)(2n+1)の場合はどういう意味が込められているのか。です。 回答していただけたら助かります。 6分の1n(n+1)(2n+1)-2n(n+1) 6分の1n(n+1)(2n+1)-2n(n+1)が何故6分の1n(n+1){(2n+1)-12}になるのかが分かりません。回答お願いします! 三角関数の公式 n倍角の公式の変形 nを0以上の整数とするとき、 2^n cos^(n+1) θ = cos (n+1)θ + Σ[k=1,n] 2^(n-k) cos^(n-k) θ cos (k-1)θ 2^n cos^(n) θ sin θ = sin (n+1)θ + Σ[k=2,n] 2^(n-k) cos^(n-k) θ sin (k-1)θ が成り立つらしいのですが、どう証明したらよいのでしょうか? なお、n=1とおくと、 2 cos^(2) θ = cos 2θ +1 , 2 cos θ sin θ = sin 2θ となり、2倍角の公式になります。 ただし、Σ[k=2,1](*)=0 です。 n=2とおくと、3倍角の公式になります。 1^2+2^2+3^2+・・・+n^2=n(n+1)(2n+1)/6 1^2+2^2+3^2+・・・+n^2=n(n+1)(2n+1)/6 となりますが、これを図形を用いて証明することはできないのでしょうか? どなたかよいアイディアがあれば教えてください。 Σ[n=0..∞](-1)^n5^n/(2n)!の和は? Σ[n=0..∞](-1)^n5^n/(2n)!の収束・発散を判定し,収束ならその和を求めよ。 という問題です。 これは交項級数なので数列{5^n/(2n)!}が単調減少且つlim[n→∞]5^n/(2n)!=0より (∵比を採ると5^(n+1)/(2(n+1))!/5^n/(2n)!=2/((2n+2)(2n+1))で単調減少且つ極限値が0) Σ[n=0..∞](-1)^n5^n/(2n)!は収束。 となるのかとと思いますが和はどのように求めればいいのかわかりません。 どのようにして求めれるのでしょうか? f(n)=(1)^n+(2)^n+(3)^n+(4)^n nは自然数 f(n)=(1)^n+(2)^n+(3)^n+(4)^n f(n)を5で割った余りをr(n)とする。 (1)r(n)は g(n)=(1)^n+(2)^n+(-2)^n+(-1)^n を5で割った余りと等しいことを示せ。 (2)r(n)=0を満たすnをすべて答えよ。 (1)は f(n)-g(n)=5t と置いて、数学的帰納法で解くのが良いのでしょうか? f(n)-g(n)=(3)^n+(4)^n-(-2)^n-(-1)^n=5t n=1のとき f(n)-g(n)=3+4+2+1=10 → OK n=kの時成立すると仮定して n=k+1の時 (3)^(k+1)+(4)^(k+1)-(-2)^(k+1)-(-1)^(k+1) =(3)^(k+1)+4{5t-3^k+(-2)^k+(-1)^k}-(-2)^(k+1)-(-1)^(k+1) =-3^k+20t+6(-2)^k+5(-1)^k ここで -3^k+6(-2)^k を帰納法で5の倍数と証明して f(n)-g(n)=5t と証明できる。 他の証明方法はないのでしょうか? (2)はどのようにすればよいか分かりません。 教えてください。 お願い致します。 n-ヘキサンのnって何を意味してる? 題名のまんまです。 n-ヘキサンのnって何を意味してるんですか? ヘキサンだけでもいいような気がしたですけど・・・教えてください。 ちなみにLewis構造式は分かってます。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム {√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4 n → ∞のとき、 {√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4 また、n → ∞のとき、 {√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8 らしいのですが、証明がかいてありませんでした。 どうか証明を教えていただけないでしょうか。 極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は? (1)lim[n→∞](3^n/(2^n+n^2)) (2)lim[n→∞](2^n+3^n)^(1/n) の極限値がわかりません。 (1)は3^nで分母・分子を割って lim[n→∞](3^n/(2^n+n^2)) = lim[n→∞][1/{(2/3)^n+n^2/3^n}] までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。 どうなるのでしょうか? あと、(2)は対数を取って lim[n→∞]log(2^n+3^n)^(1/n) = lim[n→∞](1/n)log(2^n+3^n) までいけたのですがここから先へ進めません。 xのn乗の微分の公式!! 参考書に「(定理) xのn乗の微分の公式 (i) f(x)=xのn乗(nは正の整数)のとき f '(x)=d/dx・xのn乗=n・xのn-1乗 (ii) f(x)=c(cは定数)のとき f '(x)=d/dx・c=0 ただしx=0の場合を除けば、(ii)は(i)のn=0の場合に含めることもできる。」とかいてあったのですが、「ただし・・」いこうの文がどういういみなのかわかりません。 教えてください!!!おねがいします!!!! ( n(n+1)(2n+1) )/6 の証明について 1^2 + 2^2 + ... + n^2 = ( n(n+1)(2n+1) )/6 の証明についてです 3(1^2 + 2^2 + ... + n^2) =(n+1)^3 -1 -(3n(n+1))/2 -n =(n+1)^3 - (3n/2)(n+1) - (n+1) <<このあたりの計算は中略>> =(n+1)((1/2)n(2n+1)) ∴ ( (n+1)((1/2)n(2n+1)) )/3 =( n(n+1)(2n+1) )/6 よって 1^2 + 2^2 + ... + n^2 =( n(n+1)(2n+1) )/6 こんな出だしの証明になっているのですがどうでしょうか? いきなり全体に3をかけて 3(1^2 + 2^2 + ... + n^2) という出だしになっていますが、これでもOKでしょうか? どうぞアドバイスよろしくお願いいたします。 n^n +1が3で割り切れるもの 「(1)正の整数nでn^3 +1 が3で割り切れるものをすべて求めよ (2)正の整数nでn^n +1 が3で割り切れるものをすべて求めよ」 (1)なのですが、n=3k、n=3k+1、n=3k-1のときに分けて計算したところn=3k-1すなわちnが3で割って2余るときが適することがわかりました。しかし「すべて」求めるという問題文からするとダメなのかな?と思ったのですがどうなのでしょうか? (2)なのですが、(1)と同じようにできそうかなと思ったのですがなかなかうまくいきませんでした。(1)を利用するということはできるのでしょうか? 回答いただければ幸いです。よろしくお願いします 無限級数 S(n=1,∞)1(n^n)の値について 知人から相談を受けた問題で興味があったのでちょっと考えてみましたが、 値にまでは至りませんでした。 S(n=1,∞)1(n^n)というのはnのn乗の逆数の総和です。 S(n=1,∞)1(n^n)=1+1/(2^2)+1/(3^3)+1/(4^4)・・・=1/2+1/2+1/(2^2)+1/(3^3)+1/(4^4)・・・ <1/2+(1/2+1/(2^2)+1/(3^2)+1/(4^2)・・・)=1/2+π^2/6 なので比較定理により収束することは分かるのですが、その値は出せませんでした。 岩波全書にある数学公式集2のP29からを調べてみましたが、この級数は載っていませ んでした。値はだせるのでしょうか? よろしくお願いいたします。 Σ[n=0..∞](-1)^n/nの収束はどうやってわかりますか? Σ[n=0..∞](-1)^n/nの収束・発散を吟味して収束ならその和を求めようとしていま す。 実際に判定してみましたら lim[n→∞]|a(n+1)/a(n)|=lim[n→∞]|((-1)^(n+1)/(n+1))/((-1)^n/n)|=lim[n→∞]|-n/(n +1)|=1で判定不能になってしまいました。 こういった場合はどうすればいいんでしょうか? 和についてですがとりあえず 収束という前提で収束値を求めてみましたら log(1+x)=Σ[n=1..∞] {(-1)^{n-1}/n}・x^n x=1代入で,log2 =Σ[n=1..∞] (-1)^(n-1)/nとなりましたがこれで正しいでしょうか? Γ{n+(3/2)}={(2n+1)!!/2^(n+1)}・√(π) Γ{n+(3/2)}={(2n+1)!!/2^(n+1)}・√(π) になる理由をできるだけ細かく教えて下さい。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました!