- 締切済み
三角形の面積の求め方
3辺の長さがわかっている三角形の面積の求め方を教えて下さい。土地の簡易測量に利用したいのです。よろしくお願い致します。
- みんなの回答 (5)
- 専門家の回答
みんなの回答
- deshabari-haijo
- ベストアンサー率76% (114/149)
三角形の面積の求め方の基本は、「底辺×高さ÷2」です。 三角形ABCにおいて、簡単のため最も長い辺をBCとします。 頂点Aから辺BCに下した垂線の足をHとすると、 直角三角形ABHにおいて、三平方の定理からAH^2=AB^2-BH^2-(1) また、直角三角形ACHにおいて、 三平方の定理からAH^2=AC^2-CH^2=AC^2-(BC-BH)^2-(2) 式(1)と(2)から、BH=(AB^2+BC^2-AC^2)/2BC-(3) ここで、式(3)にAB、BC、ACの値を入れ、BHの値を求めます。 式(1)に戻って、AH=√(AB^2-BH^2)からAHの値を求めます。 三角形の面積は、「BC×AH÷2」になります。
- teppou
- ベストアンサー率46% (356/766)
下記のサイトは参考になりませんでしょうか。 https://kou.benesse.co.jp/nigate/math/a14m0315.html
- qwe2010
- ベストアンサー率19% (2216/11172)
三辺の長さを、縮尺して、紙に書き写します。 コンパスで、きれいにかけるでしょう。 どこを頂点にしてもかまいませんが、 頂点から垂直に、底辺に向けて線を書きます。 これもコンパスがあれば、引けます。 これで、高さを計り、縮尺の倍数をかけます。 大きな紙なら正確な数字が出ます。 コンパスがなければ、工夫して、書いてください。 段ボールに穴をあけて、鉛筆を使えば、コンパスの代わりになります。 紙の代わりに、地面に書いてもかまいません。 ロープとか、ひもを使い、コンパスの代わりをさせます。 広い土地とか、運動場では、縮尺なしで、図面を引くこともできます。 ひもを使えば、二人で、簡単に書くことができます。
- skydaddy
- ベストアンサー率51% (388/749)
三辺の長さが判っていて、角度が判らないときはヘロンの公式で面積を求められます。公式の詳細は参照URLを見てください。
- h_ishikawa
- ベストアンサー率44% (368/821)