ベストアンサー 最大・最小について 2018/05/02 19:36 f(x)=-2ax^3+3a^2x^2における最小値を求めよ。 ただしa>0とする。 この問題の解き方と答えを教えて下さい。 また、この問題は、増減表を使って解くのでしょうか。 詳しく教えてください。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー f272 ベストアンサー率46% (8653/18507) 2018/05/02 19:41 回答No.1 xの3次関数は,xの範囲が実数全体であれば最大値も最小値はありません。 質問者 お礼 2018/05/02 20:52 ありがとうございました! 範囲(0≦x≦2)を書き忘れてたので、次の質問に出そうと思います。 間違いに気付き、良い復習となりました。 とても分かりやすく、ありがとうございました!!! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 カテゴリ 学問・教育数学・算数 関連するQ&A 3次関数の最大・最小について 添付写真の266、(2)です。 (1)は解けて、答えはx=-2aで極大値4a^3+b、x=0で極小値bとなりました。 そこで、(2)で-2≦x≦1の区間も加えた増減表を書いた結果、 x=-2でf(x)=12a+b-8 x=-2aでf(x)=4a^3+b x=0でf(x)=b x=1でf(x)=3a+b+1 となりました。 しかし、どこを最大最小と決めて良いのか分かりません。 それ以前の問題があればご指摘お願いします。 よろしくお願いします。 最大値と最小値 0≦x≦πのとき、f(x)=1-2sinxcosx+(cosx-sinx)^3の最小値、最大値を求めよ。という問題です。 f'(x)=2(sin^2x-cos^2x)+6sinxcosx(sinx+cosx) と解きxを求めてから増減表を使って最大値、最小値を求めると思うのですが、xはどうやって求めたらいいでしょうか? 最大値、最小値 f(x)=X^2-2aX+2aの0<=X<=1における最大値M、最小値mとするとき、2M-mの最小値は? という問題ですが、場合分けがよくわかりません。場合分けがどのように分けたらいいのか教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 3次関数の最大・最小 f(x)=-2ax^3+3a^2 x^2 の 区間0≦x≦2における最小値を求めよ。 ただしa>0とする。 解答は、 f(0)=0、f(2)=-16a+12a^2 (i) f(0)≧f(2) となるのは 0≧-16a+12a^2 4a(3a-4)≦0 よって0<a≦4/3 のとき 最小値は f(2)=-16a+12a^2 (ii) f(0)<f(2) となるのは 4/3<aのとき 最小値は f(0)=0 (i)(ii) より 0<a≦4/3 のとき x=2で 最小値-16a+12a^2 4/3 のとき x=0で 最小値0 となるのですが、 (i)は f(0)≧f(2) という条件ですが、これだとa=4/3のとき f(0)=f(2)になりませんか? xが0のときと、2のときの両方で最小値をとると思うのですが、どうしてこのような場合分けになるかがわかりません。 自分は f(0)>f(2) すなわち 0<a<4/3 のときx=2で最小値16a+12a^2 f(0)=f(2) すなわち a=4/3 のときx=0、2で最小値0 f(0)<f(2) すなわち 4/3<a のときx=0で最小値0 という答えになるべきだと思うのですが、どうして不正解なのでしょう。 最大最小 f(X)=XlogX+aXについて、f(1)=f(e)であるように定数aの値を定め その時f(X)の区間[1,e]における最大値と最小値を求めよ。。 という問題で、 aの値は出しました。。 a=1-e分のeです が、最大最小が分かりません。。 グラフの大体の形でも分かればなぁ・・・と思ったんですけれども、 それすら分かりません。。 最大は,Xが1とeのとき、最小はe^e-1分の1のときです。。 最小のXの値を見ただけでも、分からないです・・・ 今日で、2回目ですがお願いします。。 数学II 三次関数の最大、最小の場合分け 数学II 三次関数の最大、最小の場合分け a<0とする。関数f(x)=2x^3-3(a+1)x^2+6ax の -2≦x≦2 における最大値と最小値を求めよ。 という問題です。 まずf(x)を微分して f'(x)=6(x-a)(x-1) a<0より、a<1です。 ここで増減表をかくのですが、-2≦x≦2 の範囲にaがあるかどうかで場合分けをします。 -2<a<0 のときと、a≦-2 としました。 -2<a<0 のとき、最大値の候補はf(a) か f(2) のとき、最小値の候補はf(-2) か f(1) です。 f(-2)=-28-24a f(a)=-a^3+3a^2 f(1)=-2+3a f(2)=4 最大値を考えたとき、さらに場合分けが必要だと思ったので -a^3+3a^2 > 4 のとき、-a^3+3a^2 = 4 のとき、-a^3+3a^2 < 4 のとき 最小値も同じようにして場合分けをしました。 そしてa≦-2 のときも同じように場合分けをして結局 最大値 a≦-2 のとき、-28-24a -2<a<-1 のとき、-a^3+3a^2 -1≦a<0 のとき、4 最小値 a<-26/27 のとき、-2+3a -26/27<a<0 のとき、-28-24a となりました。 一応答えは出したんですが、場合分けが多いし複雑なので あっているのかどうかが分かりません。 まず、場合分けが正しいのかどうかが分かりません。 このような場合分けでいいのでしょうか? 間違っているところがありましたら教えてください。 最小値の問題です f(x)=(x^2-2ax)^2+2(x^2-2ax) の最小値を求めよ 答え a^4-2a^2 (-1≦a≦1) -1 (a>1またはa<-1) という問題の解説をお願いします。 最大値、最小値 いまいちピンとこない問題が出てきたので質問させていただきましたm(_)m 2乗は^2であらわせて頂きますm(_)m f(x)=2^2-4ax+a+a^2の0≦x≦3における最小値、最大値を求めてください 1、a<0 2、0≦a<2分の3 3、a=2分の3 4、2分の3<a<3 5、a≧3 なにとぞよろしくお願いします。 二次関数の最大値と最小値についてです 高校二年生なのですが、この問題が解けず、苦戦しています。力を貸してください 二次関数f(x)=x2乗-2ax+b(a,bは定数、a>0)があり、f(x)の最小値は2である。 0≦x≦2におけるf(x)の最大値と最小値の差が3であるようなaの値をお願いします 2次関数の最大値、最小値 y=x二乗-2ax+1(0≦x≦2)の最小値を求めよという問題です。 y=(x-a)二乗-a二乗+1 頂点(a.-a二乗+1) x=a a<0のとき x=0のとき 最小値1 0≦a<2のとき x=aのとき最小値-a二乗+1 a≧2のとき x=2のとき 最小値-4a+5 です。 先生は答えはこうだと言っていましたが 0≦a≦2のとき.... a>のとき.... と教科書の答えには書かれていました。 どちらが正しいのですか? あと、 a=0、a=2のときは a>◻︎の方に=を入れる という意味がわかりません。 どういう考え方をすればわかりやすいですか? たくさんの質問すいません。 わかりにくいですが教えてください! 二次関数の最大・最小 高校数学の、最大最小の問題に苦しんでいます。 xが0≦x≦5の範囲を動くとき、関数F(x)=-x^2+ax-aの最大値は3である。定数aの値を求めよ。 この問題が解けません。 教えて頂くと大変ありがたいです。 最小値の最大値? -1<=x<=1 のとき、二次関数f(x)=x^2-2ax+aの最小値をmとする。 mをaで表すと、 a<=-1 のとき m=f(-1)=3a+1 -1<a<1のとき m=f(a) =-a^2+a a>=1 のとき m=f(1) =-a+1 というのが(1)番です。 (2)番は、mを最大にするaの値、およびmの最大値を求めよ。 という問題で、(1)の結果をグラフで表してみましたが その先が分かりません。 どなたか詳しい解説お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数IIIの最大・最小について 数学IIIの分野についての質問です。 『f(x)= x/x^2 + ax + b が定める曲線y=f(x)は原点で直線y=xに接している』 という問題なのですが、この条件時でb=1は出ました。 しかしf(x)が最大値および最小値を持つようなaの範囲の求め方、およびf(x)が最大値を持つが最小値を持たない時のaの値の求め方が分かりません。 どなたかご回答宜しくお願いします。 関数の最大値・最小値 関数f(x)の最大値や最小値を求める際、まずf'(x)を求め f'(x)=0となるようなxと定義域の端のx等から増減表を作りますが、 場合によってはf(x)のx→∞のときの極限等を考えなければならない 、と参考書に書いてありました。 そこで何故だろうと自分で考えてみたのですが、おそらく関数の 一番右端や左端、つまりx→∞やx→-∞のとき最大値や最小値を取る可能性があるため、それを考慮する必要があるのではないかと思いました。 しかし、この自分の考えに基づけばx→∞やx→-∞の極限を考えなければならないのに、問題によってはそれを考慮せずに終わる解答がありました。自分の考えが間違っているのか、それとも考慮しなくても解答できるのかどちらかご教授いただきたいと思います。 下の(1)がx→∞やx→-∞の極限を考慮した解答の載っていた問題で、(2)、(3)は考慮しない解答の載っていた問題です。問題はともに最大値・最小値を求めよです。 (1)y=(x-1)/(x^2+1) 最大値:(√2-1)/2 x=1+√2 最小値:(-√2-1)/2 x=1-√2 (2)y=x-√(x^2-1) 最大値:1 x=1 最小値:なし (3)y=√(x^2+1)+√{(x-3)^2+4} 最大値:なし 最小値:3√2 x=1 二次関数の最大値、最小値の問題がわかりません! y=x二乗-2ax+1(0≦x≦2)の最小値を求めよという問題です。 y=(x-a)二乗-a二乗+1 頂点(a.-a二乗+1) x=a a<0のとき x=0のとき 最小値1 0≦a<2のとき x=aのとき最小値-a二乗+1 a≧2のとき x=2のとき 最小値-4a+5 です。 先生は答えはこうだと言っていましたが 0≦a≦2のとき.... a>のとき.... と教科書の答えには書かれていました。 どちらが正しいのですか? あと、 a=0、a=2のときは a>◻︎の方に=を入れる という意味がわかりません。 どういう考え方をすればわかりやすいですか? たくさんの質問すいません。 わかりにくいですが教えてください! 数学 2次関数最大・最小値 やってみたのですが分からなかったので解答・解説お願いします(>_<) 2次関数f(x)=ax^2-4ax+2 (a)>0 において 定義域が-1<=x<=1であるときこの関数の最小値を求めよ。 です! 二次関数の最大最小の範囲のとりかた 問題はこんなかんじです a≧0とする。二次関数f(x)=x^2-2ax+2a+3の0≦x≦4 における最大値M(a) 最小値(a)を求めよ。 解答を見ても納得できないところがあります。 範囲をそれぞれとるんですが、 解答は 0≦x<2のとき 2≦x<4のとき、 4≦xのときのみっつしか出していない。 x<0のときというのも必要ではないでしょうか。 これ、すごい気になってたんです。 アドバイスよろしくお願いします 最大値 最小値がわかりません。 sin、cos、がわかりません。教えててください。 0°≦x≦180°において f(x)=1-2acosx-2sin^xとするとき (1)a=1のときf(x)の最大値はx=A度のときB 最小値はx=C度のときD (2)f(x)の最大値をM(a)としたときのM(a)の最小値は a=EのときでFである。 以上のA~Fがわかりません。 教えてください。 二次関数の最大と最小 今晩は 参考書の説明ではよく分からないので教えてください。 ---------------------------------------------------------------------- 例題: 二次関数y=x^2-2x+2のa≦x≦a+2に於ける最大値を求めよ ---------------------------------------------------------------------- 解説: 下に凸型のグラフでの最大値を求める問題で、区間の両端が決め手となる。 関数をy=f(x)とおくと、f(a)=f(a+2)を満たすaの値が、場合分けの境界値になる y=x^2-2x+2=(x-1)^2+1 xの変域a≦x≦a+2の幅は2で一定 f(x)=x^2-2x+2とおくと f(a)=a^2-2a+2 f(a+2)=a^2+2a+2 f(a)=f(a+2)とすると、a=0 よって、 a<0のとき x=aで最大値a^2-2a+2をとる 0≦aのとき x=a+2で最大値a^2+2a+2をとる ---------------------------------------------------------------------- このようにありました。 ですが、f(a)=f(a+2)とする意味が全然分かりません。 xの範囲の最大値の時の関数と最小値の時の関数、つまり区間の両端を等式で 結ぶことがどうして答えに繋がるのか見当が付きません。 何故区間内の最大値/最小値を求めるときに、区間の最小値の時の関数と最大 値の時の関数を等しくするのですか? 宜敷御願い致します 最小値と最大値 二次関数y=ax^2+2ax+b(-2≦x≦1)の最大値が6、最小値が3であるように定数a,bの値をもとめよ 二次関数y=ax^2-4x+a+1の最大値が1であるような定数aの値を求めよ 以上の2問がとけずにこまってます。 1問目はy=a(x+1)^2-a+b に変形はできるのですが、この後どうすればいいのかわかりません、 また、2問目にいたってはどこをどうすれば平方完成できるのかもわかりません どなたかおしえてください よろしくおねがいいたします 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました! 範囲(0≦x≦2)を書き忘れてたので、次の質問に出そうと思います。 間違いに気付き、良い復習となりました。 とても分かりやすく、ありがとうございました!!!