(続く)
問16
(3)
ルート内>=0, 分母≠0 より
x<-2, x>2
f(x)=1/(x^4*(x^2-4)^(1/2))
g1(x)=(x^2-4)^(1/2)/x, g2(x)=(x^2-4)^(1/2)/x^3
g1'(x)=(x^2-4)^(1/2)(1/x)'+((x^2-4)^(1/2))'(1//x)
=-(1/x^2)(x^2-4)^(1/2)+(1//x)x/(x^2-4)^(1/2)
=1/(x^2-4)^(1/2)-(1/x^2)(x^2-4)^(1/2)
g2'(x)=(x^2-4)^(1/2)(1/x^3)'+((x^2-4)^(1/2))'(1//x^3)
=-(3/x^4)(x^2-4)^(1/2)+(1/x^3)x/(x^2-4)^(1/2)
=1/(x^2(x^2-4)^(1/2))-(3/x^4)(x^2-4)^(1/2)
a g1'(x)+b g2'(x)=f(x)
となるa,bを求めると
a=1/24, b=1/12
I=∫ f(x) dx=∫ (a g1 ' (x)+ b g2 ' (x)) dx=a g1(x)+b g2(x) +C
=(1/24)(1/x)(x^2-4)^(1/2) +(1/12)(1/x^3)(x^2-4)^(1/2) +C (C=任意定数)
=(x^2+2)(√(x^2-4))/(24x^3)+C (C=任意定数) ... (Ans.)