ベストアンサー 【数学】 2017/03/01 00:02 【数学】 lim x→a ↑これってどう読むんですか? どういう意味ですか? lim h→0 とかも急に登場してきてどうしたら良いのかさっぱり分かりません。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー notnot ベストアンサー率47% (4903/10364) 2017/03/01 00:15 回答No.1 決まった読み方は無いです。「リミットxをa」とか。 変数xの値をaという値に限りなく近づけたときの値という意味です。 質問者 お礼 2017/03/01 08:01 みなさん回答ありがとうございます 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) asuncion ベストアンサー率33% (2127/6290) 2017/03/01 01:47 回答No.3 極限について勉強しましょう。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 akauntook ベストアンサー率19% (295/1481) 2017/03/01 00:27 回答No.2 もうおっさんなんで、ちゃんと覚えてなくて申し訳ないですが、多少でも役に立つかなと言うところで回答してみました。 読み方は、リミットですかね。 x→aは読み方はわかりませんが、limと合わせてxを限りなく0に近づけた状態を表します。 何にしても、新しい事が出てくる時には大体急に出てくるので、驚かずに新しい事を受け入れましょう。 lim h→0 と言うのも同じように、hを限りなく0に近づけた状態ですね。 どちらの場合も→の左にある文字を含む式がlimの右にあるはずなので、limを使わない他の式や値として表すようにしろと言うのがよくある問題ですね。 と言うところで役に立つところがあれば参考にしてください。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学 数学 「f(x)がx=aで微分可能のとき lim(h→0) {f(a+h)-f(a-h)}/h をf'(x)で表せ」の解説をお願いできるでしょうか? ちなみに答えは2f'(a)です 数学の問題 (1) lim(x→∞){(e^-3x)-1/x} = (0-1)/∞=0 と解答があるのですが、e^-3x=0なんですか? (2) lim(h→0){(log_10(1+2h)/h} = 2/log_e10 と解答があります。 私はlog_10 A={log_10 e}log_e A を使ってlim(h→0){(log_10(1+2h)/h} = e^2 log_10e とやったのですが、間違いでしょうか? よかったら教えてください^^ 数学の極限値問題 数学の極限の問題で悩んでいます (1) lim(x→0) (a^x - 1)/x (a>0) (2) lim(x→0) (1/x)[log(1 + x)/(1 - x)] 解ける方いらっしゃいましたら解き方教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム この数学の解法を教えてください f(x)=√(2x-1)としたとき、次の問題の解は何か lim(h→0)=f(2h+2) -f(2) / h ちなみにこれは高校数学の範囲でしょうか? 数学 微分係数 問題 関数f(X)=2x^3について、次の微分係数を求めよ。 (1)f(2) lim f(a+h)ーf(a)/h h→0 lim 2(2+h)^3ー2(2)^3/h h→0 lim 2(8+12h+6h^2+h^3)ー2(8)/h h→0 lim 12+6h+h^2=12が答えかと思ったのですが、24が答えでした。 h→0 どこで間違えているか指摘お願いします。 数学(iii)の極限について 数学(iii)の極限について 教科書の極限を予習しているのですが、よく分からないところがありました。 例題で次の定数a , b を求めよ。という問題です。 問題がみにくくてすみません。分数の場合 lim は全部に = の前まで全てにかかっていると考えてください。できるだけ、縦でそろえていますが・・ lim a√x + b x→1 -------- = 2 x - 1 という問題で、考え方として、 x→1のとき(分母)→0であるから、与えられた極限値が存在するためには、x→1のとき(分子)→0でなければならない。 とあり、次に解き方が書いてあります。 lim a√x + b x→1 -------- = 2 x - 1 において、lim(x - 1) = 0 であるから ・・・・・・・・・・・(1) x→1 lim(a√x + b) = 0 ・・・・・・・・・・・・・・・・・・・・(2) x→1 とありますが、ここが全く分かりません。どうして、(1)だから(2)なのでしょうか? ですから、上の示した考え方のところから全く分かりません。 できるだけわかりやすく教えてくださるとありがたいです。 よろしくお願いします。 数学 数学 三角関数の極限が死ぬほど難しいです lim(x→π/4) (4x-π)tan2x の極限を求めるという問題なのですが θ=4x-πとおいても求めることのできない問題です どのような方法でもとめればいいのでしょうか? あと lim(x→π/2) (ax-b)/cosx =1/2 が成り立つような定数a bを求める問題なのですが 解説を見てみるとcosx=0だからax-bも0になるとかいてありました 0/0が不定形だとは知っていますがなぜ分子までも0になるといえるのでしょうか? 数学の極限 すみません、数学の極限の問題を教えてください。 (1) lim(x→∞) (3+8x-3x^2) (2) lim(x→2+0) 4/(x-2) 解ける方がいらっしゃいましたら教えてください。 数列・関数の極限について 俗に言う「はさみうちの原理」とその周辺に関して質問があります。 数学IIIの教科書によると, すべての自然数nに対し a_n ≦ b_n ≦ c_nのとき lim{n→∞}a_n = lim{n→∞}c_n = α(定数) ⇒ lim_{n→∞}b_n = α lim{x→∞}f(x) = lim{x→∞}h(x) = α(定数)とする。 十分大きいxに対し,f(x) ≦ g(x) ≦ h(x) ⇒ lim_{x→∞}g(x) = α となっております。 (1)limを登場させる順番がなぜ違うのか? 数列の極限の方ではまず不等式を記し,関数の極限の方ではlimから記しています。 (2)「すべての」と「十分大きい」の部分は数列の極限と関数の極限で異なるか? 数列の極限の方でも「十分大きい自然数nに対し」でもよいような気がするのですが…。 以上、よろしくお願いします。 数学IIBの問題の質問です。 数学IIBの問題の質問です。 どうしてもわからないので、解法と答えを教えてください。 お願いします! 次の関数について答えよ。 f(x)=-2+x+x^2∫[a~0]{f(t+1)-f(t)}dt ただし、aは定数であり、∫[1~0]f(t)dt=-5/6 である。 (1)∫[a~0]{f(t+1)-f(t)}dt の値を答えよ。 (2) aの値を求めよ。 (3) F(x)=∫[x~0]f(t)dt とするとき、lim[h→0] F(3+h)-F(3)/h の値を求めよ。 数学の問題がわかりません>< 数学の問題がわかりません!よければ教えてください>< I = [0,∞)とおく。 f , f_n ; I → R はI上で有界な関数とし、関数列{f_n}[n=1,∞]は関数 f に I 上で一様収束するとする。 (1) 各n∈Nに対してlim[x→∞]f_n(x) = a_n ∈Rが成り立つならば、数列{a_n}[n=1,∞]はCauchy列であることを示せ。 (2) (1)と同じ条件の下でlim[n→∞]a_n = A とおくとき、lim[x→∞]f(x) = Aであることを示せ。 回答よろしくお願いします! 数学 微分 問題 次の関数のx=1における微分係数f(1)を定義から計算せよ。 (1)f(x)=3x+1 微分に対してまだ初心者なんでよく分からないのですが、 f(a)=lim{f(a+h)ーf(a)}/hという公式に当てはめていけばいいんでしょうか? h→0 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ~大学数学~ ~大学数学~ lim[x→0](1+sinx)^1/xの極限値の求め方を教えてください。 よろしくお願いします。 微分 可能 について 微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか? 数学3 微分の問題です。 数学3、微分の問題です。 lim (t→0 )( t+ 1 )^1/t =e を利用して、 次の極限値を求めよ。 (1)lim (h→0 )( 1+ 2h )^1/h (2)lim (h→0 )(( e^h -1 )/n) 答えは、 (1)e^2 (2)1 です。よろしくお願いします。 数学の質問なのですが… ε-δ論法に関する問題です。 lim(x→a) f(x) = A lim(x→a) g(x) = B のとき、以下を証明せよ。 lim(x→a) f(x)・g(x) = AB lim(x→a)f(x)/g(x) = A/B (B≠0) lim(x→a)f(x)=Aならば、aの近傍でAは有界 であることを使うらしいのですが、ご存知の方解答よろしくおねがいします。 ε-δ論法のことは知っているので、そこから解説して頂かなくても結構です。 大学1年生の数学です。 数列{x(n)}が x(n+1)=1/2x(n)+1/x(n) (n=1,2,3…)で定義されるとする。 x(1)>0のとき、a=lim_[n→∞]x(n)を求めよ。 数学がとても苦手で困っています… よろしくお願いします! 数学3 極限値の計算 極限値の計算をするときに、 lim(x → a){f(x)+g(x)} = lim(x → a) f(x) + lim(x → a) g(x) といったように、原理的には、多項式を単項式に分解してそれぞれにlimを分配したような形にして計算しますよね。 そのときに、lim(x → ∞) {√(x^2+3) - x } のような問題の、ルートの中身を計算出来るのはなぜですか。 もちろん、直感的には自然なことだとは思うのですが、教科書にあるような極限値の性質に従って各項にlimを分配しようと考えたらよくわからなくなりました。 また、極限値の計算というのは、普段は途中経過を省略して計算しますが、原理的にはどこまで分解して計算しているのでしょうか。 lim(x → a) 1/x^2 でしたら、 lim(x → a) 1/x^2 = lim(x → a) 1 / { lim(x → a) x * lim(x → a) x } まで分解して計算していることになっているのでしょうか。 わかってないことだらけですが、よろしくお願いいたします。 高校数学、微分の定義式 微分の定義の1つ f‘(x)=lim(h→0)f(x+h)-f(x)/hのhは何を表しているのでしょうか?xは1やら2の代わり(任意の変数)ですが、hの意味がわかりません。 h⊂xと考えてよいのでしょうか? 数学の極限値の問題を解いてほしいです。 数学の極限値の問題を解いてほしいです。 以下の問題です。 lim {(sinx-x)/(sinx)^3} 収束(x→0) lim x^x 収束(x→+0) lim (sinx)/x 収束(x→0) lim {(sinx)/x}^{1/(x^2)} 収束(x→0) lim √(x+2)-√(x) 収束(x→∞) lim (x-sinx)/(x^3) 収束(x→0) lim (e^x-e^4)/(x-4) 収束(x→4) できれば解く過程もよろしくお願いします。 全部とは言いません。できるものだけでも構いませんので、よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
みなさん回答ありがとうございます