- ベストアンサー
二重積分の問題です
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
f"(x)はf'(x)のxによる微分であってtによる微分ではありません f"(x)=(d/dx)f'(x)≠(d/dt)f'(x)=-1/(1-cos(t)) 0≦t≦2π x(t)=t-sint y(t)=1-cost y(t)=f(x(t)) 1. x_0=x(π/3) a_0=f(x_0)=f(x(π/3))=y(π/3)=1-cos(π/3)=1-1/2=1/2 x'(t)=1-cost y'(t)=sint f'(x)=y'(t)/x'(t)=sint/(1-cost) x'(π/3)=1-cos(π/3)=1-1/2=1/2 y'(π/3)=sin(π/3)=√3/2 a_1=f'(x_0)=y'(π/3)/x'(π/3)=√3 (d/dt){f'(x)} =cost/(1-cost)-(sint)^2/(1-cost)^2 =1/(cost-1) f"(x)=(d/dt){f'(x)}/x'(t)=1/(cost-1)/(1-cost)=-1/(1-cost)^2 f"(x_0)=f"(x(π/3))=-1/{1-cos(π/3)}^2=-4 a_2=f"(x(π/3))/2=-4/2=-2 ∴ a_0=1/2 a_1=√3 a_2=-1/2 2. D={(x,y)|x=t-sint,0≦y≦1-cost,0≦t≦2π} ∬Ddxdy =∫_{0~2π}f(x)dx =∫_{0~2π}y(t)x'(t)dt =∫_{0~2π}{(1-cost)^2}dt =∫_{0~2π}{1-2cost+(cost)^2}dt =∫_{0~2π}[1+{1+cos(2t)}/2]dt =∫_{0~2π}[3/2+{cos(2t)}/2]dt =(3/2)∫_{0~2π}dt =2π*3/2 =3π ∬Dxdxdy =∫_{0~2π}xf(x)dx =∫_{0~2π}x(t)y(t)x'(t)dt =∫_{0~2π}{(t-sint)(1-cost)^2}dt =∫_{0~2π}[(t-sint){1-2cost+(cost)^2}]dt =∫_{0~2π}[t-2tcost+t{1+cos(2t)}/2-sint+sin(2t)-sint{1+cos(2t)}/2]dt =∫_{0~2π}[t-2tcost+t{1+cos(2t)}/2-sintcos(2t)}/2]dt =∫_{0~2π}[3t/2-2tcost+tcos(2t)/2+{sin(t)-sin(3t)}/4]dt =∫_{0~2π}[3t/2-2tcost+tcos(2t)/2]dt =[3t^2/4-2tsint+tsin(2t)/4]_{0~2π}+∫_{0~2π}(2sint-sin(2t)/4)dt =3π^2 ∬Dydxdy =∫_{0~2π}{f(x)}^2dx =∫_{0~2π}[{y(t)}^2]x'(t)dt =∫_{0~2π}{(1-cost)^3}dt =∫_{0~2π}(1-cost){1-2cost+(cost)^2}dt =∫_{0~2π}(1-cost){(3/2)-2cost+{cos(2t)}/2}dt =∫_{0~2π}[(3/2)-(7/2)cost+2(cost)^2+{cos(2t)}/2-{costcos(2t)}/2]dt =∫_{0~2π}[(5/2)+{3cos(2t)}/2-{costcos(2t)}/2]dt =∫_{0~2π}[(5/2)-(15/2)cost-{cos(3t)}/4]dt =(5/2)∫_{0~2π}dt =5*2π/2 =5π
その他の回答 (2)
- jcpmutura
- ベストアンサー率84% (311/366)
#2です a_2=-2 に訂正します 0≦t≦2π x(t)=t-sint y(t)=1-cost y(t)=f(x(t)) 1. x_0=x(π/3) a_0=f(x_0)=f(x(π/3))=y(π/3)=1-cos(π/3)=1-1/2=1/2 x'(t)=1-cost y'(t)=sint f'(x)=y'(t)/x'(t)=sint/(1-cost) x'(π/3)=1-cos(π/3)=1-1/2=1/2 y'(π/3)=sin(π/3)=√3/2 a_1=f'(x_0)=y'(π/3)/x'(π/3)=√3 (d/dt){f'(x)} =cost/(1-cost)-(sint)^2/(1-cost)^2 =1/(cost-1) f"(x)=(d/dt){f'(x)}/x'(t)=1/(cost-1)/(1-cost)=-1/(1-cost)^2 f"(x_0)=f"(x(π/3))=-1/{1-cos(π/3)}^2=-4 a_2=f"(x(π/3))/2=-4/2=-2 ∴ a_0=1/2 a_1=√3 a_2=-2 2. D={(x,y)|x=t-sint,0≦y≦1-cost,0≦t≦2π} ∬Ddxdy =∫_{0~2π}f(x)dx =∫_{0~2π}y(t)x'(t)dt =∫_{0~2π}{(1-cost)^2}dt =∫_{0~2π}{1-2cost+(cost)^2}dt =∫_{0~2π}[1+{1+cos(2t)}/2]dt =∫_{0~2π}[3/2+{cos(2t)}/2]dt =(3/2)∫_{0~2π}dt =2π*3/2 =3π ∬Dxdxdy =∫_{0~2π}xf(x)dx =∫_{0~2π}x(t)y(t)x'(t)dt =∫_{0~2π}{(t-sint)(1-cost)^2}dt =∫_{0~2π}[(t-sint){1-2cost+(cost)^2}]dt =∫_{0~2π}[t-2tcost+t{1+cos(2t)}/2-sint+sin(2t)-sint{1+cos(2t)}/2]dt =∫_{0~2π}[t-2tcost+t{1+cos(2t)}/2-sintcos(2t)}/2]dt =∫_{0~2π}[3t/2-2tcost+tcos(2t)/2+{sin(t)-sin(3t)}/4]dt =∫_{0~2π}[3t/2-2tcost+tcos(2t)/2]dt =[3t^2/4-2tsint+tsin(2t)/4]_{0~2π}+∫_{0~2π}(2sint-sin(2t)/4)dt =3π^2 ∬Dydxdy =∫_{0~2π}{f(x)}^2dx =∫_{0~2π}[{y(t)}^2]x'(t)dt =∫_{0~2π}{(1-cost)^3}dt =∫_{0~2π}(1-cost){1-2cost+(cost)^2}dt =∫_{0~2π}(1-cost){(3/2)-2cost+{cos(2t)}/2}dt =∫_{0~2π}[(3/2)-(7/2)cost+2(cost)^2+{cos(2t)}/2-{costcos(2t)}/2]dt =∫_{0~2π}[(5/2)+{3cos(2t)}/2-{costcos(2t)}/2]dt =∫_{0~2π}[(5/2)-(15/2)cost-{cos(3t)}/4]dt =(5/2)∫_{0~2π}dt =5*2π/2 =5π
- info222_
- ベストアンサー率61% (1053/1707)
1 t=π/3のときx0=π/3-sin(π/3)=π/3-√3/2 y(t)=f(x(t)) f(x0)=y(π/3)=1-cos(π/3)=1/2 y'=sin(x)=f '(x) x'=f '(x) y f '(x)=y'/y=sin(t)/(1-cos(t)) f '(x0)=sin(π/3)/(1-cos(π/3))=√3 f ''(x)=(cos(t)(1-cos(t))-sin(t)sin(t))/(1-cos(t))^2 =(cos(t)-1)/(1-cos(t))^2=-1/(1-cos(t)) f ''(x0)=-1/(1-cos(π/3))=-2 ∴a0=f(x0)= 1/2, a1=f '(x0)=√3, a2=f ''(x0)/2!= -2/2= -1 2 I0=∫∫[D] dxdy=∫[0,2π] f(x) dx x:0→2πのときt=0→2πなので =∫[0,2π] y(t) (dx/dt)dt =∫[0,2π] (1-cos(t))^2 dt =∫[0,2π] (1-2cos(t)+(1/2)(1+cos(2t))) dt =∫[0,2π] (3/2) dt =3π Ix=∫∫[D] xdxdy= ∫[0,2π] xydx =∫[0,2π] xy (dx/dt) dt x:0→2πのときt=0→2πなので =∫[0,2π] (t-sin(t)) (1-cos(t))^2 dt =∫[0,2π] (t-sin(t)) (1-2cos(t)+(1/2)(1+cos(2t))) dt 三角関数の1周期の整数倍の区間の積分は0になるから =∫[0,2π] t(1-2cos(t)+(1/2)(1+cos(2t))) dt 部分積分する。三角関数の1周期の整数倍の区間の積分は0になるから =[t((3/2)t-2sin(t)+(1/4)sin(2t))][0,2π]-∫[0,2π] (3/2)t dt =6π^2-[(3/4)t^2][0,2π] =3π^2 Iy=∫∫[D] ydxdy= ∫[0,2π] y^2 dx =∫[0,2π] y^2 (dx/dt) dt x:0→2πのときt=0→2πなので =∫[0,2π] (1-cos(t))^3 dt =∫[0,2π] (1-3cos(t)+3(cos(t))^2-(cos(t))^3) dt =∫[0,2π] (1-3cos(t)+(3/2)(1+cos(2t))-(1/4)(3cos(t)+cos(3t))) dt 三角関数の1周期の整数倍の区間の積分は0になるから =∫[0,2π] (5/2) dt =5π