• 締切済み

この問題の解き方教えてください

嫌車家東大受験生吉村です 次の多項式Aを多項式Bで割った商と余りを求めよ。 A=2x³-3x²+2x-8,B=2x-1

みんなの回答

  • yyssaa
  • ベストアンサー率50% (747/1465)
回答No.3

>筆記が出来ないときは A=2x^3-3x^2+2x-8 =2x^3-x^2-2x^2+2x-8 =x^2(2x-1)-2x^2+2x-8 =x^2(2x-1)-2x^2+x+x-8 =x^2(2x-1)-x(2x-1)+x-8 =x^2(2x-1)-x(2x-1)+(1/2)*2x-(1/2)+1/2-8 =x^2(2x-1)-x(2x-1)+(1/2)(2x-1)-15/2 =(x^2-x+1/2)(2x-1)-15/2 だから 商:x^2-x+1/2 余り:-15/2

  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.2

オイ、オイ、中学生レベルだよ。組立除法なんて聞いたことないの。

参考URL:
http://manapedia.jp/text/index?text_id=2708
  • gohtraw
  • ベストアンサー率54% (1630/2965)
回答No.1

両者の最高次数の項はAが2x^3、Bが2x なので、Bにx^2を掛けると 2x^3-x^2 これをAから引くと -2x^2+2x-8 ・・・(1) (1)の最大次数の項はー2x^2で、Bの最大次数の項は2xなのでBにーxを かけると ー2x^2+x これを(1)から引くと x-8 ・・・(2) (2)の最大次数の項はx、BのBの最大次数の項は2xなのでBに1/2を かけると x-1/2 これを(2)から引くと ー15/2  以上より 商はx^2ーx+1/2 余りはー15/2

関連するQ&A