ベストアンサー 複素関数の質問 2014/07/06 18:42 f(z)がDで正則であるとする。Dにおいて|f(z)|が定数であるとき、|f(z)|~は正則ですか? |f(z)|~は|f(z)|の複素共役を表す。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー transcendental ベストアンサー率51% (28/54) 2014/07/06 20:16 回答No.1 |f(z)|が定数(非負実数)ならば、実数の共役は自分自身ですから、|f(z)|の共役複素数もまたcです。 ------------------------ |f(z)|=c(定数)のとき、f(z)は定数値関数であることを示してみます。 c=0ならば、f=0である。 c≠0とすると、u^2+v^2=c^2より、 u・(∂u/∂x)+v・(∂v/∂x)=0, u・(∂u/∂y)+v・(∂v/∂y)=0 が得られ、この連立方程式が自明でない解(u、v)をもつから、 (∂u/∂x)(∂v/∂y)-(∂u/∂y)(∂v/∂x)=0、ゆえにCauchy-Riemannの関係式によって、(∂u/∂x)^2+(∂v/∂x)^2=0、すなわち、f’=0.したがって、fはDで定数値関数です。 質問者 お礼 2014/07/25 01:29 回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 共役複素関数について 複素数z=x+iyに共役な複素数がz*=x-iy であるということはわかるのですが、ある複素関数f(z)に共役な複素関数というものがどうゆうものであるかがよくわかりません。教えていただけるとありがたいです。 複素関数の問題です。 複素関数の問題です。 複素平面の上半平面をH={z∈C | Imz>0} H上の正則関数f(z)を線積分」 f(x) = int _[0,z] √ζ√(ζ-1)dζ で定義。 [0,z]は0を始点、zを終点とする線分であり、 平方根はH上でHを値にとる分枝。 【問題】 fによるHの像を求めよ。 方針すら見えず困っています…。 すいませんが、よろしくお願いします。 複素関数の問題です 複素関数の問題です。 次の問題が解けなくて困っています。どなたか解説できる方宜しくお願いします。 f(z)は,|z|≦1の領域で正則な複素関数とする. (1) nを自然数とするとき,∫[0→2π]f(e^iθ)cos(nθ)dθ={π/(n!)}f^(n)(0)が成り立つことを示せ. (e^iθ=zで置換) (2) mを自然数とするとき,∫[0→2π]f(e^iθ)cos^(2m)θdθ={π/2^(2m-1)}Σ[k=0,m]C(2m,k){f^(2m-2k)(0)}/{(2m-2k)!}が成り立つことを示せ.ただし,f^(0)(0)=f(0)とする. (3) ∫[0→2π]cos(2mθ)cos^(2m)θdθ=π/2^(2m-1)を示せ. (zの領域に注意) 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 複素関数でのロピタルの定理 「f(z),g(z)は複素変数の複素関数で、z=αを含む領域で正則。また、f(z)=0(z→α),g(z)=0(z→α)であるとする。このとき、f'(z)/g'(z) (z→α) が存在するならばf(z)/g(z) (z→α) = f'(z)/g'(z) (z→α) が成り立つか」 という問題を調べているのですが、なかなか見つかりません。要は実数値関数のロピタルの定理を複素関数に拡張できるかという問題なんですけど、どう証明すればいいのでしょうか。 複素関数(初学者、独学) z*はzに共役な複素数を表します。z,wは複素数、kは実定数です。 z*-z=2kiww*で両辺を2ki(≠0)で割ってとあるのですが、なぜ、0ではないとわざわざ断っているのですか?複素関数w=1/zではz=0のときもwは無限遠点となって、定義されますよね? 複素関数の問題 複素関数の問題 次の複素関数の問題ですが,この関数の特異点が分からずに困っています? f(z) = 2 / ( λz^2 + 2μiz - λ ) ただし z :複素数 λ・μ:実定数でμ>λ>0です 追加で,この複素関数の特異点も教えていただけると幸いです f(z) = z^-c / ( 1+z ) ただし、0<c<1 です これの特異点は-1でいいのでしょうか? 以上、よろしくお願い致します 複素関数の正則性。 誤って、回答締め切りをしてしまったため、再度立てさせていただきます。すみません。 領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w =¯f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいです。 z=x+iy として、f(x-iy)とします。 fが具体的に与えられていないため、どのように∂u/∂xや∂v/∂yなどの計算を行えば良いのかが分かりません。 どうすれば良いのでしょうか? よろしくお願いします。 複素関数の正則性。 領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w = f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいのですが、実際の関数が与えられていないため、∂u/∂xや∂v/∂yなどの計算ができなくて困っています。 どうすれば良いのでしょうか? よろしくお願いします。 複素関数の問題の解答解説を教えてください。 複素関数の問題の解答解説を教えてください。 f(z)は正則でf(1) = 2(1 + i), f(-it) = f(it)および∫[0→2]f(it)/((t^2)+1) dt = πi を満たすとする。 c ∶ z = 2e^(iθ) (-π/2≤ θ ≤π/2) とするとき∫c f(z)/((z^2)-1) dz を計算しろ お願いします。 複素共役 共役複素数 複素共役 共役複素数 複素共役の性質としてよくわからない性質があったので 質問させて頂きます。 複素数をz、zに対する複素共役をz^-で表します。 (z^-1)=(z^-)/(|z|^2) これは、複素数の逆元を表していると思います。 この、(z^-1)とは(1/z)と同じことなのですか? また、(z^-1)=(z^-)/(|z|^2) となる理由を知りたいのですが、 証明の仕方を教えて頂けないでしょうか? 以上、よろしくお願い致します。 複素解析学の質問です _ C(複素数全体の閉方)で正則な関数は定数に限るらしいのですがこの証明はどうすればいいのでしょうか、非定数関数を考えて背理法でしょうか C:|z|<∽なら正則でも定数にはならないのですが、、、 お願いします 複素関数 複素関数 f(z) = z^2 の 0 は特異点ですか。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 複素関数論の正則性についての質問です。 f(z)=z^2 と f(z)=|z^2| の正則性を調べなさい。 この問題の解き方を教えてください。 複素積分(コーシーの積分定理)について質問です zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。 複素関数の積分について教えてください。 複素関数で、次のような問題がだされました。 Cをx=cosyに沿って1から-1+πiに至る曲線とするとき、次の積分を求めよ。 ∫c ze^zdz よくわかってないので、次のような回答になってしまいました。 根拠はありません。 f(z)=ze^zは前平面で正則なので、f(z)の原始関数F(z)の原始関数によって ∫c (ze^z)dz=[ze^z](←πiから1まで)-[e^z](←πiから1からまで) =πie^πi-e-(e^πi-e) 以上です。 どなたか、正しい答えを教えてください。 次の複素関数の解き方,解答を教えてください 次の複素関数の解き方,解答を教えてください 正則関数f(z)の実部をu = u(x, y),虚部をv = v(x, y)とおくとき(2u - v) + i(u + 2v) が正則かどうかコーシー・リーマンの方程式を利用して調べよ。 お願いします。 複素関数 下の問題の証明がわかりません。どなたかヒント、解法を教えていただけないでしょうか。 条件・・・f(z)はz=0で微分可能で、f'(0)=1。 さらにすべてのz1、z2 に対して、f(z1+z2)=f(z1)f(z2)が成り立つとする。次のことを証明せよ。 (a) f(z)は -∞<z<∞ で正則である (b) すべてのzについてf'(z)=f(z) (c) f(0)=1 ロピタルの定理の複素関数への適用について f(z),g(z)が点aで正則で、f(a)=g(a)=0、g'(a)が0でないとき、 lim{z→a}f(z)/g(z)=lim{z→a}f'(z)/g'(z) であることを証明せよ。 という問題を調べているのですがなかなか見つかりません。 要は複素関数にもロピタルの定理が適用できることを証明せよという問題だと思うのですが、これはどう証明したらいいのでしょうか? 複素関数 聞きたいことが2つあります。 1つ目は複素関数w=u+ivについてです。 この関数がコーシーリーマンの関係式を満たすとき、w'=a+ibもコーシーリーマンの関係式を満たすことを示したいのです。 まず、wにコーシーリーマンの関係式を適用してからラプラスの関係式を適用して d^2u/dx^2 + d^2u/dy^2 =0 d^2v/dx^2 + d^2v/dy^2 =0 となります。 このあと、a=du/dx + du/dy b=dv/dx + dv/dy と定義します。 でコーシーリーマンの関係式を使ったのですがどうにも一致しません^^; aとbの定義が違うのでしょうか? 2つ目は円柱周りの流れを表す複素速度ポテンシャルについてです。 f(z)=Az+B/z=φ+iψ f'(z)=u-iv と定義されていて、境界条件が設定されているのですが使い方がよくわかりません。 f(z)=φ+iψで、ラプラスが成り立つことは証明済みなのですが、これをうまく使うのでしょうか? どうぞ、よろしくお願いします。 複素関数の微分について かなり乱暴な質問だと思いますが、回答をよろしくお願いします。 複素関数f(z)がz。において微分可能であることを示すときに 「zがあらゆる方向からz。に近づいてきても ((f(z)-f(z。))/(z-z。)がある値に近づく」 というくだりがよくわかりません。 2変数関数の偏微分みたいに、方向によって値が違っていても いいような気がしますが、複素関数では同じになるのでしょうか? それとも同じになる時に限って微分可能と定義付けるのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
回答ありがとうございました。