ベストアンサー 合成関数の積分について 2004/05/17 19:46 ∫1/[x^2+1] dx=tan^-1 x ←タンジェントxのインバース ↑を使います。 ∫1/[4x^2+1] dx =1/2*tan^-1 2x であってますでしょうか? よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー eiji2003 ベストアンサー率22% (46/206) 2004/05/17 21:26 回答No.1 はい。 これでOKです。 質問者 お礼 2004/05/18 22:52 ありがとございます(^^) 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 三角関数の積分 ∫1/(2+cosx)dx おそらく、t=tan(x/2)と置いて解くと思うんですが、私では答えが出せないのでよろしくお願いします。 この積分がどうしてもわかりません ∫tan^4 x dx tan^2x=1/cos^2x-1とおいたり、いろいろ試しましたがわかりません。 ∫x/(1-cosx)dx 半角の公式など使いましたが、わかりません。 ヒントだけ、とかはできればやめてください。 もう十分悩みましたので… よろしくお願いします… 合成関数の積分 合成関数の積分についてなのですが(x-1)^-2はあたかもxを積分するかのように-(x-1)^-1となりますが、(x^2-1)^-2の場合は無理なのでしょうか。また、1/{(x+2)^2+1}の場合はtan^-1(x+2)となるのでしょうか。合成関数の部分がxの一次式ならこのようにしてもいいのでしょうか。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 定積分の計算 以下の定積分の計算をしたのですが、自信がありません。 間違っていないか、ご指導お願いします。 (1) ∫{0→1} x(1-x) dx = ∫{0→1} (1/2)x^2 - (1/3)x^3 dx = ∫{0→1} (1/6)(3x^2 - x^3) dx = ∫{0→1} (1/6)x^2(3-x)dx = [(1/6)x^2(3-x)]{0→1} = [(1/6)・1・(3-1)]-[(1/6)・0・(3-0)] = (1/6) (2) ∫{0→(π/2)} cos x dx 公式 ∫cos x=sin x+Cより =[sin x]{0→(π/2)} =[sin (2/π)]-[sin 0]=1-0=1 (3) ∫{0→3} 3/(x^2+9) dx 公式 ∫1/(a^2+x^2) dx=(1/a)tan^(-1)(x/a)+Cより =∫{0→3} 3/(x^2+3^3) dx =[3・(1/3)tan^(-1)(x/3)]{0→3} =[3・(1/3)tan^(-1)(3/3)]-[3・(1/3)tan^(-1)(0/3)] =tan^(-1)(1)=arctan(1)=π/4 定積分の問題 ∫_1^2 dx/(x^2-2x+2) と言う問題があり (x^2-2x+2)=(x-1)^2+1 より x-1=t→dx=dt x…1→2 t…0→1 よって ∫_0^1 dt/{(t^2)+1} =[1/1 Tan^-1 t/1](_0^1) =Tan^-1 1 - Tan^-1 0 =π/4 - π/2 =-π/4 となるのですが、答えはπ/4なんです。 どこが違うのでしょうか? 積分問題 A=∫[0→π/2](sin^3x)/(sinx+cosx)dx B=∫[0→π/2](cos^3x)/(sinx+cosx)dx (1)A+Bを計算せよ。 (2)AとBが等しいことを示せ。 (3)Aの値を求めよ。 (1)A+B=∫[0→π/2]{(sin^3x)+(cos^3x)}/(sinx+cosx)dx =∫[0→π/2](1+sinx+cosx)/(sinx+cosx)dx =∫[0→π/2][{1/(sinx+cosx)}+1]dx =∫[0→π/2][{1/√2sin(x+π/4)}+1]dx =[0→π/2][1/{√2log tan(x/2-π/8)}+1]dx =1/{√2log tan(π/8)} + π/2 - 1/{√2log tan(-π/8)} =(2/√2)log tan(π/8) + π/2 になったのですがこのような方法でよろしいのでしょうか? (2)に関しては、どのようにして行ってよいのかわかりません。 (3)もどうようにわかりません。 教えて頂けないでしょうか? よろしくお願い致します。 三角関数の置換積分 以前同じような質問をしましたが、直接的な質問であったため削除されてしまったので、改めて質問します。 次の二つの三角関数の積分をt=tan(x/2)と置換して解く問題です。 (1)∫dx/(1+sinx) (2)∫cosx/(1-cosx) 自分で解いたところ、 (1)-2/(tan(x/2)+1)+C (2)-1/tan(x/2)-x+C という答えになったのですが、合っていますでしょうか? 不定積分 毎度すみません。参考書の積分の問題を解いているのですが、答えが不確かなもので質問させて頂きます。 ・∫tan^2x dx t = tanx と置くと 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} dt/dx = 1/cos^2x , dx = cos^2x dt 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} X cos^2x dt = ∫(tan^2x) 2tanx dt = 2∫t^3 dt = 2 X t^4/4 = tan^4x /2 ・∫1/(x^2 + 2x + 5) dx =∫1/(x^2 + 2x + 5) X (2x + 2) dx dt/dx = 2x + 2 dx = 1/(2x + 2) dt 与式 =∫1/(x^2 + 2x + 5) X (2x + 2) X 1/(2x + 2) dt =log|x^2 + 2x + 5| 一応自分で解いてみたのですが、誤った記述がありましたらご指摘頂けると有難いです。また、答えを導く際、他に簡単な方法等ありましたら、教えて頂けたら嬉しいです。 積分 ∫dx/(4X^2+1) 答え合わせしたいのですが、これを解いたら Tan^-1(2X)+c あってますか? 三角関数の不定積分 ∫{1/(1+2sin x)}dx の解法を教えて下さい。 t = tan x/2 と置けば、 sin x = 2t/(1+t^2) dx = 2/(1+t^2)dt となり、 計算していくと、 ∫{2/(t^2+4t+1)}dt となると思うのですが、その先の解法が分かりません。 不定積分について 解けない問題がありました。途中計算がどのようななっているのかが知りたいです。宜しくお願いします。 (1)∫(x+2/√x)dx (2)∫(3-tan x)cos x dx (3)∫(1/{tna^(2) (x)) }dx (4)∫cos(7-3x/2)dx (5) ∫1/{cos^(2) (7x+5) }dx 答え (1)2/3 (x√x)+(4√x) +C (2)3sinx+cosx+C (3)-cotx-x+C (4)-2/3 sin(7-3x/2)+C (5)1/7 tan(7x+5)+C 積分についてです 不定積分がわからなかったので、わかる方がいたらお願いします。 微分は解けるのですが、積分はどこから解いていいかわかりません。 1、∫1/(3x)dx 2、∫1/(7x-2)dx 3、∫x^(3)/((x^4)-1)dx 4、∫cotxdx 5、∫In (x)/xdx 6、∫1/(√(x)*(1-√(x)))dx 7、∫((3x(^5)+2x(^2)-3)/x^3dx 8、∫((sec(x)^2)/tan(x)dx 9、∫x(^2)*log(x)dx In (x)=loge(x)とします。 どうかお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 三角関数の置換積分 1) ∫1 / (2 + sinx)dx 2) ∫1 / (2√2 + sinx + cosx)dx この2問がわかりません。 1)は、t=tan(x/2)とおくと、 sinx = 2t / (1 + t^2) 、 dx = 2 / (1 + t^2)dt となり、これを代入して変形すると、 ∫1 / (t^2 + t + 1)dt となるのですが、このあとどうすればいいのかわかりません。 よろしくお願いします。 積分です (1)∮1/tan4xdx (2)∮{e^5x+(1-x^2)/x}dx (3)∮cos(tank)/cos^2xdx (4)∮(1→e)(logx-x)^2dx (5)∮(1→2)e^x/e^x-1dx 朝テストで出たのですが分かりませんでした。 一問ずつでも良いので、 どなたか教えてくださいませんか? tan の部分積分 いつもお世話になっています。 tan x の積分をしたくて、新しく覚えた部分積分というのを使ってみると ∫tan x dx = ∫(sin x)/(cos x) dx = ∫(-cos x)' (1/cos x) dx = (-cos x)(1/cos x) - ∫(-cos x) (sin x/cos^2 x) dx = -1 + ∫tan x dx と、おかしなことになりました。 部分積分の公式の元に戻って (fg)' = f'g + fg' と考えると f(x) = -cos x g(x) = 1/cos x となって、左辺が定数の微分になるので (-1)' = tan x - tan x だからあってます。 定数を f(x), g(x) に分解したあたりが怪しいような気がするのですが、 最初にやった部分積分の式で何をどうしたのがいけなかったのかが説明できません。 いったい何がだめだったのでしょうか? よろしくお願いします。 不定積分 ∫√(x^2-1)dxを求めよ。 次のようにやりましたが、うまくいきませんでした。 よろしくおねがいします。 (1) A=x√(x^2-1)-∫x^2/√(x^2-1)dx =x√(x^2-1)--∫(x^2-1+1)/√(x^2-1)dx =x√(x^2-1)-∫√(x^2-1)dx-∫1/√(x^2-1)dx よって、2A=x√(x^2-1)-∫1/√(x^2-1)dx ∫1/√(x^2-1)dxをもとめればよいが、うまくいかないと判断。 (2) x=tanθと置き換えてと考えてみましたが、簡単にならず。 積分 問題 積分 問題 ∫(x^2)/(1+x^2)^2dxについて ∫(x^2)+1-1/(1+x^2)^2dxとして ∫1/(1+x^2)dx-∫1/(1+x^2)^2dx ∫1/(1+x^2)dxは(tan^-1(x))と解けるのですが、 ∫1/(1+x^2)^2dxが解けません・・・ (1+x^2)=tと置いたりしましたが上手くいきません。 部分分数分解も考えましたがよく分からない状況です。 ご回答よろしくお願い致します。 合成関数の積分方法 久しぶりの積分でかなり忘れてるのでよろしくお願いします. I = ∮e^(-x^2)dx,D : 0≦x≦1についてですが, -1/2[e^(x^2)]D=(1-e)/2ってできますっけ? 最初置換積分で解こうとして, x^2=tと置き,x=√t(∵x≧0), dx = 1/(2√t)dt, 0≦t≦1より I = ∮(e^(-t)・1/2√t)dtとなったんですが,部分積分法で解けませんでした. 積分 ∫x tan^-1x dx 部分積分で解くらしいのですが何度もループしてしまって答えが出ません。 解説お願いします。 積分、逆三角関数の問いについて教えてください。 大学の微積の問題に困ってます。お願いします。 次の(4)(5)はどうといたらよいでしょうか?よろしくお願いします。 (1)x/1+x⁴を部分分数に展開せよ。 (2)x²+1∓√2xを平方完成せよ。 (3)(2)を利用して、(1)の式を積分せよ (4)tan⁻¹(1+x√2)+tan⁻¹{1/(1+x√2)}の値を出せ。 (5)tan⁻¹{1/(1+x√2)}+tan⁻¹(-1+x√2)+C=tan⁻¹(x²) と書ける。その理由と定数Cを決定せよ。 自分の解答 (1)~(3)はx/1+x⁴={1/(2√2)}{1/(x^2 + 1 - (√2)x) - 1/(x^2 + 1 + (√2)x)} として、(2)を使い、 ∫x/1+x⁴dx=1/2{-tan⁻¹(1+x√2)+tan⁻¹(-1+x√2)}+A (Aは積分定数) という形で、(3)の答えが出ました。 (4)はtan⁻¹(1+x√2)=α、tan⁻¹{1/(1+x√2)}=βと置く。 tanαtanβ=1より、 sinαsinβ/cosαcosβ=1 ⇔cosαcosβ-sinαsinβ=0 ⇔cos<α+β>=0 ⇔α+β=(π/2)×n (nは自然数)・・答 となりました。 (5)は、c=0と計算上、出ました。しかし、とても煩雑な計算でした。筋の良い計算方法はありますでしょうか?また、(5)と書ける理由がわかりません。x²が平方完成したときに出てきたり、tan⁻¹{1/(1+x√2)}+tan⁻¹(-1+x√2)は(4)と似ていますが、何から由来して、(5)のようにかけるのでしょうか? (4)(5)の解答、不明点について、教えてください。 よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとございます(^^)