ベストアンサー 1階の微分方程式 2014/05/28 21:01 (dv/dt)+av = b a,b を定数として、v(t₀)=v₀を初期条件とする。 (dv/dt)=b-av b-av=zとおいてからどうするのかわかりません。 詳しい解説お願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー NemurinekoNya ベストアンサー率50% (540/1073) 2014/05/28 21:35 回答No.1 こんばんは。 ☆b-av=zとおいてからどうするのかわかりません。 ◇どうして、このzをtで微分するという発想が浮かばないのかな? z = b-avをtで微分すると、 z'= -av' a≠0ならば v' = -z'/a そうすると、 (dv/dt)=b-av -(1/a)・(dz/dt) = z dz/dt = -az あとは自分でやる。 質問者 お礼 2014/06/10 12:51 詳しい解説ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 1階の微分方程式 (dv/dt)+av=0 aを定数とする。 初期条件v(t₀)=v₀とする。 わかりません。詳しい解説お願いします。 同時形の微分方程式 (dv/dt) = 1+v/t v(t₀)=v₀を初期条件とする。 わかりません。 詳しい解説お願いします。 同時形の微分方程式 tv(dv/dt) = t^2+v^2 初期条件v(t₀)=v₀とする。 (dv/dt) = (t^2+v^2)/tv となるので、 u = (t^2+v^2)/tv としてからどうすればいいのですか? 詳しい解説お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 同時形の微分方程式 (dv/dt) = -(2v-5t-3)/(v+2t+3) v(t₀)=v₀を初期条件とする。 変数tと変数vが混ざっているのでわかりません。 詳しい解説お願いします。 微分方程式 dx/dt= v dv/dt= -x (初期条件t = 0 に於いてx = -1 v = 0) を満たす微分方程式を t=1,2,3,4の時での詳しい解答を教えてください。 1番上の2式を併せるとd^2x/dt^2 = -x(初期条件t = 0 に於いてx = -1 dx/dt = 0)となります。 偏微分方程式の問題です。 aを定数とするとき、次の偏微分方程式を解け。 du/dt+a・du/dt=0 ただし、初期条件を以下とする。 u(x,0)=bx^-x (b:定数) (ヒント) u(x,t)=g(x)h(t)と変数分離できることを仮定してよい。 解答・解説お願いします。 考え方の提示のみではなく、答えまでよろしくお願いいたします。 速度と微分方程式 速度と微分方程式 1.最初、20m/sの早さで走っていた自動車が一定の加速度で速さを増し、4.0秒後には40m/sになった。 (1)加速度一定の条件を用いて、早さに関する微分方程式を書け。 (2)初期条件を書け。 (3) (1)の微分方程式を(2)の初期条件を元に解け。 (4)速さの時間に関する式を求めよ。 (5) (4)を基に微分方程式を書け。これを解いて、この間に進んだ距離を求めよ。 (1) a=dv/dt ∫dv=a∫dt v+c=at+c v=at+c (2) 初期条件 t=0のときv=20m/s (3) 初期条件より v=5t+20 (3)までの答えはこれでいいでしょうか? (4)と(5)がわからないのでどなたかよろしくお願いします。 微分方程式 m*dv/dt+mvν=eE (初期条件t=0のときv=0) 記号の読みv(ブイ),ν(ニュー)である。 この微分方程式の解き方を教えて下さい。 微分方程式 d^2x/dt^2=x/ab (xはtの関数、aとbは定数) 条件:x(t₁)=x₀、t=t₁のときdx/dt=0 参考書によると、答えはx=x₀cos{(t-t₁)/√(ab)} x=Acos√(ab)t+Bsin√(ab)tとおいてからどうするのですか? 詳しい解説お願いします。 物理の微分方程式 物理の微分方程式 高二です。塾で微分方程式を習ったのですが、さっぱりです。。。。 問 質点が速度Vに比例する抵抗力を受けて運動する際、V(t)、X(t)を求めよ。ただし、比例定数をk(>0)とする。 解 ma = mg-kv --1 a = dv/dt --2 v = dx/dt --3 1,2より dv/dt = g-kv/m よって dv/dt = -k/m(v-mg/k) ---4 ←変数分離型 (1/v-mg/k)dv = -k/m dt ----5 ここから積分して、計算して log{v(t)-mg/k} = C-kt/m ----6 (C=log{v(0)-mg/k}) {}は絶対値 そして {v(t)-mg/k} = e^C -e^-kt/m -----7 その後 v(t)=mg/k(1-e^-kt/m)(t≧0) となりました 質問 (1)初期条件ってなんですか? (2)4→5の過程はなぜやるんですか?変数分離型ってなんですか? (3)6→7の過程でなぜlogがとれるんですか? (4)よければx(t)の答えを教えて下さい とても困っています!部分的でもよいので教えて下さい、お願いします 微分方程式について 次の微分方程式を解いて欲しいのですが。 m*dv/dt=eE-m*v/τ 初期条件はt=0の時v=v0です。 解はv=v0*e^(-τ/t)+e*τ*E/m です。 この途中計算式を教えて欲しいです。 同時形の微分方程式 (dv/dt) = -{(2v-5t)/(v+2t)} 変数tと変数vが混ざっているのでわかりません。 詳しい解説お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分方程式 F = lim[δt→0]{m・δv/δt - (u + v)・δmp/δt - δv・δmp/δt} が、 F = m・dv/dt - (u + v)・dmp/dt -dv・dmp/dt ではなく、 F = m・dv/dt - (u + v)・dmp/dt となるのはなぜでしょうか? よろしくお願いします。 二階の微分方程式について教えてください。 (d^2x)/(dt^2)+(a+b)dx/dt+(c+d)x=e という問題の特解がわかりません。 a,b,c,d,eは全て定数です。 微分作用素を使ってやろうとしてのですが、教科書とかには右辺がe^t(指数関数)や、三角関数のやりかたしか載ってなくて。。 どのようなやりかたでもイイので教えてください。 微分方程式 1/vと初期条件 質量mの質点が、速度に比例する抵抗のみの作用のもとで運動しているとき、微分方程式dv/dt=-(k/m)vが成り立つという。v(0)=0としてこの微分方程式を解け。という問題で3点わからない箇所があります。 自分の解き方では、-(k/m)=aとして、dt/dv=1/av 両辺をvで積分して、 ∫(dt/dv)dv=1/a∫(1/v)dv 、t=(1/a)(log|v|+C1) C1は積分定数、at-C1=log|v|、 |v|=e^(at-C1)、v=±e^(at)*e^(-C1) よってv(t)=±e^(at)*e^(-C1) 、t=0とv(0)=0を代入して 0=±e^(0)*e^(-C1)、0=±1*e^(-C1)よりe^(-C1)=0という矛盾がおこりました。これが1つ目のわからない点です。 二つの目のわからない点は、vが正の値をとるようになっていることです。 (1/a)∫(1/v)dv=(1/a)(logv+C1)のようになっていることです。 本の解答では、dt/dv=-(m/k)1/v、 -(k/m)dt/dv=1/vだから、 -(k/m)t=0+∫(v0→v)dv/v=log(v/v0)、よってv=v0e^{-(k/m)t}となっています。 v0=v(0)としたら、本の答えがv=0になってしまうので、それはないと思いますが、3つ目としてv0は何を表すかわかりません。 どなたか、なぜe^(-C1)=0になるのか、なぜvが正の値をとるか、v0は何かを教えてくださいおねがいします。 微分方程式 とき方が良くわからないのでわかりやすく回答していただけると嬉しいです。 (1)終端速度を求める問題です mdv/dt=mg-av dv/{(mg/a)-v}=a/m dt 上の式が下の式と同じなのはわかるのですが、左をvの式・右をtの式にするなら mdv/(mg-av^2)=dtで問題ない気がするのですが、なぜここで終わりにしなかったのでしょうか? (2)ばねの問題 m(dx)^2/dt^2 =-kx をとくには dsinwx=wcoswt 、 dcoswx=-wsinwx (wはオメガです) がヒントになると書いてあるのですがこういうのって普通にといていて思いつくものなのでしょうか?それとも一度どこかで聞いて理解し、機械的にこれを利用しているのでしょうか? (3)微分方程式が良くわからないのでとく際のpoint等あれば教えてください よろしくお願いします 一階微分方程式 この微分方程式の解き方がわかりません。どなたかわかる人がいらしたら、教えてください。 Mdv(t)/dt=-ζv(t)+a*sin(ωt) 初速度をv(0)とおくと、この線形微分方程式の解は、 v(t)=(v(0)+(aω/M)/(ω^2+(ζ/M)^2)exp(-ζt/M)+(a/M)sin(ωt-δ)/√(ω^2+(ζ/M)^2) 公式どおり計算てみましたが、部分積分のところが上手に出来ません。その部分積分は、 v(t)=exp(-ζt/M)[a/M∫exp(ζt/M)*sin(ωt)dt+v(0)] のインテグラルの部分です。 偏微分方程式 ∂y(x,t)/∂t = α ∂^2y(x,t)/∂x^2 ただし、0≦t, 0≦x≦p, αは正の定数 を、以下の条件のもとで解け。 初期条件 t=0; y=A 境界条件 x=0; y=B x=p; y=C ただし、A,B,Cは正の定数である。 この問題がわかりません。 y = η(x,t) + B + (C-B)/p x とおくと、ηについての境界条件がどちらもy=0になるので、 η=X(x)T(t)とおいて変数分離形で解いてみましたが、 途中にフーリエ級数もどきがでてきてしまい、 うまく解けません。 どなたか教えていただけないでしょうか。 連立微分方程式 以下の3連立微分方程式を解析したいです. dN/dt = - β N P dV/dt = - β V P dP/dt = β(N-V)P - γP β、γは定数です。 一般解を求めることは難しいと思うので、t->∞のときにPが0 になった状態の、NとVの関係を求めてやることはできないでしょうか。 (ケルマック、マッケンドリックモデルの拡張です) 微分方程式の解法 (1)(d^2x)/(dt^2)=b 条件:t=0、x=0、dx/dt=0 (2)(d^2x)/(dt^2)+a(dx)/(dt)=b 条件:(1)と同じ (3)(dy)/(dt)+ay^2=b ただし、a>0、b>0 条件:t=0、y=0 の解法を教えて下さい。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
詳しい解説ありがとうございます。