- ベストアンサー
一階微分方程式
この微分方程式の解き方がわかりません。どなたかわかる人がいらしたら、教えてください。 Mdv(t)/dt=-ζv(t)+a*sin(ωt) 初速度をv(0)とおくと、この線形微分方程式の解は、 v(t)=(v(0)+(aω/M)/(ω^2+(ζ/M)^2)exp(-ζt/M)+(a/M)sin(ωt-δ)/√(ω^2+(ζ/M)^2) 公式どおり計算てみましたが、部分積分のところが上手に出来ません。その部分積分は、 v(t)=exp(-ζt/M)[a/M∫exp(ζt/M)*sin(ωt)dt+v(0)] のインテグラルの部分です。
- みんなの回答 (2)
- 専門家の回答