締切済み 三角関数 2014/04/27 19:34 aを実数の定数とし f(θ)=sinθ+acosθとする θがすべての実数値をとって変化するときのf(θ)の最大値と最小値を求めよ よろしくお願いします・・・ みんなの回答 (1) 専門家の回答 みんなの回答 178-tall ベストアンサー率43% (762/1732) 2014/04/28 08:37 回答No.1 >aを実数の定数とし f(θ)=sinθ+acosθとする …ならば、 f(θ) = √(1 + a^2)*(Asinθ + Bcosθ) : A = 1/√(1 + a^2), B=a/√(1 + a^2) と整形して、 f(θ) = √(1 + a^2)*sjn(θ+ C) : C = arctan(B/A) …というハナシを想い出してください。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 教えてください。 関数f(θ)=acos^2θ+(a-b)sinθcosθ+bsin^2θの最大値が3+√7 、最小値が3-√7 となるような実数の定数a,bの値を求めよ。 解いてくださるとうれしいです。よろしくお願いします。 数IIの三角関数の問題 数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。 三角関数の問題 a,bを定数とし,a>bを満たす f(x)=acos^2x+√3(a-b)cosxsinx+bsin^2xの最大値が6、最小値が2となるようなa,bを求めなさい(A:a=5,b=3) どなたか解説お願いしますm(_ _)m 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 三角関数の問題です θの範囲が0≦θ≦πであり、x=sinθ+cosθとする。 (1)x=0となるθの値を求めよ。 (2)xの値の範囲を求めよ。 (3)aを実数とするとき、y=asinθ-1/2sin2θ+acosθをa、xで表せ。 (4)yの最小値を求めよ。 この問題の解答をお願いします。 三角関数について 関数f(θ)=sin2θ-a(sinθ+cosθ)+2とする。 また、t=sinθ+cosθ,0≦θ≦πとする。 1.f(θ)の最小値m(a)を求めよ 2.f(θ)>0が0≦θ≦πで常に成立するような定数aを求めよ。 解法を教えてください。 三角関数の定積分の問題教えて下さい。 答えがない問題なので教えて下さい。 F(a)=インテグラ[0→π/2]|sin x - acos x | dx を最小にするaの値を求めよ。 もう10年以上前のことなのでやり方を忘れました。 自分で考えた解き方は絶対値の中を ≧0と <0で場合分けして sin x - acos x ≧0の時 F(a)=インテグラ[0→π/2](sin x-acos x)dx =[-cos x - asin x] 0→π/2 = -cos (π/2) - asin (π/2) - (-cos 0 - asin 0 ) こんな感じで解いていけばいいのでしょうか? わかる方教えて下さい。よろしくお願いします。 なおパソコンでの書き方がよくわからず、すみません。 三角関数 三角関数の問題について教えていただきたいです途中までは出来ました 1) y=cos2Θ+sinΘ(0≦Θ<2π) でsinΘ=tとすると y=-2t^2+t+1となり、yの最大値は9/8で最小値は-2 2) aを実数とし、Θに関する方程式cos2Θ+sinΘ=a…(1)を考えるただし 0≦Θ<2π (1)が解を二つ持つ時のaの範囲を求めよ 上の問題なんですが何処から手をつけたらよいかわかりません ご教授おねがいします。 三角関数 すべての実数 θ に対して、 sin θ + cos ( θ + α ) = k が成立するとき、実数の定数 k , α の値を求めよ。 ただし、0 ≦ α < 2π とする。 θ = 0 , π / 2 で成り立つので ( θ = 0 ) cos α = k ・・・・・(1) ( θ = π / 2 ) 1 + cos ( π / 2 + α ) = k 1 - sin α = k ・・・・(2) ・ ・ ・ 以下省略 なぜ、「θ = 0 , π / 2 で成り立つので 」と言えるのですか? 教えてください。 三角関数の最大・最小の問題です 関数f(x)=sin^2X+asinX+2 (-90°≦X≦90°)について考える。 但し、aは正の定数とする。 (1) a=1のとき、関数f(x)の最大値と最小値を求めよ。 (2) 関数f(x)の最小値が-3となるような定数aの値を求めよ。 このような問題で(1)はよいのですが、(2)についてです。 関数f(x)は頂点の座標が(-a/2,-a^2/4+2)から、場合分けを考え、 答えでは -a/2<-1 , -1≦-a/2<0 の2つのみの場合分けなのです。 私は、-a/2<-1 , -1≦-a/2<1 , -a/2>1 の3つの場合分けを考えたのですが、これではいけないのでしょうか? どこを間違えているのか教えて頂きたくお願申し上げます。 二次関数の問題についてです。 急ぎの質問です。 二次関数の問題がわかりません。 以下の問題の解き方&解答を教えてください! 1. aを実数の定数とする。二次関数 f(x)=x^2-2ax+a ( 1≦x≦2 )について。 (1)最小値を求めよ。 (2)最大値を求めよ。 2.(1)実数x、yがx^2+y^2=1をみたすとき、x+y^2の最大値、最小値を求めよ。 (2)実数x、yがx^2+y^2=1をみたすとき、2x-yの最大値、最小値を求めよ。 よろしくお願いします! 続・三角関数の問題 高2です。これは模試の類題です f(x)=cos2θ-cosθで範囲が0≦θ<2πのとき {1}f(x)をcosθであらわし、そのときの最小値をもとめよ {2}f(x)が最小値のときのθをaとし、 sin{θ+a}-cos{θ+a}の最大値を求めよ やはり解けません。おねがいします。 三角関数 すべての実数 θ に対して、 sin θ + cos ( θ + α ) = k が成立するとき、実数の定数 k , α の値を求めよ。 ただし、0 ≦ α < 2π とする。 sin θ + cos ( θ + α ) = sin θ + cosθcosα - sinθsinα = ( 1 - sinα )sinθ + cosαcosθ = √{ ( 1 - sinα )^2 + cos^2α }sin ( θ + β ) ( √ は{ } の中だけかかっています。) これが θ によらず一定のとき ( 1 - sinα )^2 + cos^2α = 0 sinα = 1 0 ≦ α < 2π より α = π / 2 , k =0 前にも書いたやつの別解なんですが。 「これが θ によらず一定のとき ( 1 - sinα ) + cos^2α = 0 sinα = 1 」 この部分がなんで、( 1 - sinα ) + cos^2α = 0 になるのかがわかりません。教えてください。 それと、別解もやっぱり解けるようにしておかなくてはいけないんでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 三角関数の問題 高2です。 11月進研模試の三角関数の問題で解けないのがあります。 f(x)=cos2θ-cosθで範囲が0≦θ<2πのとき {1}f(x)をcosθであらわし、そのときの最小値をもとめよ {2}f(x)が最小値のときのθをaとし、 sin{θ+a}×cos{θ+a}の最大値を求めよ {1}については一応解けましたが、{2}はさっぱりです。 お願いします。 数II 三角関数 早めの回答希望します 関数f(θ)=kcos^2θ+sinθ(kは実数の定数)はf(π/6)=5と満たす。 定数kの値は k=□ f(θ)=5を満たすsinθの値は sinθ=□/□ 、 □□/□ でありf(θ)=5を満たす正の角θのうち、小さいほうから2番目の値は□/□π、 小さいほうから5番目の値は□□/□πである。 また、f(θ)=5を満たす正の角θのうち小さいほうから4番目のθに対して tanθ=-√□/□ が成り立つ。 □に1文字入ります 途中計算も入れて欲しいです よろしくお願いします 三角関数 3sinθ+4sinθの0≦θ≦πでの最大値は■であり、最小値は■である。また、π/4≦θ≦π/2での最大値は■であり、最小値は■であるという問題で解答に3sinθ+4sinθ=5sin(θ+α) π/4≦θ+α≦π/2よりsin(π/4+α)≧θ+α≧sin(π/2+α)とあるがなぜ符号がさかさまになるんですか?? 三角関数の問題について 数学の問題です。解ける方よろしくお願いします f(θ)=sin3θ-cos3θ+3sin2θ-9(sinθ+cosθ) ただし0<=θ<2π (1)t=sinθ+cosθとおくとき,f(θ)をtで表しなさい (2)f(θ)の最大値と最小値、およびそのときのθの値を求めなさい よろしくお願いします・・・! 三角関数について 質問失礼します。 三角関数が苦手で下の問題が解けません。 やり方など教えてほしいです。 aを正の定数とする。点Oを原点とする座標平面において、中心がOで、半径が1の円と半径が2の円をそれぞれc1、c2とする。θ≧0を満たす実数θに対して、c1上の点をp(cosaθ、sinaθ)、c2上の点をQ(2cos(π-θ/2)、2sin(π-θ/2))とする。 (1)3点O、p、Qがこの順に一直線上にあるような最小のθの値はθ=アπ/イa+ウである。 (2)線分pQの長さの2乗pQ2乗は、エcos((オa+カ)θ/キ)+クである。 (3)θの関数f(θ)=エcos((オa+カ)θ/キ)+クとおき、f(θ)の正の周期のうち最小のものが3πであるとすると、a=ケ/コである。 以上です。 よろしくおねがいします。 長文失礼しました。 三角関数の問題・・・ θの方程式で、 cos2θ+2sinθ+2a-1=0 (aは実数の定数)・・・(*) についての問題で (*)をみたすθが存在するようなaの値の範囲を求めよ。 とあるんですが、 二倍角使って a=1/2(-cos2θ-2sinθ+1) =1/2{-(1-2sin^2θ)-2sinθ+1} =sin^2θ-sinθ となってsinθ=tとおいて a=t^2-t とするところまではわかるのですが、この後わからなくて答えを見たところ答えが -1/4≦a≦2 となってました。どうしてこうなるのか教えてくださいm(__)m 2次関数です、教えてください! aは定数とする。関数 f(x)=(x^2+2x+2)^2 -2a(x^2+2x+2)+aの 最小値をnとする。 次の問いに答えよ。 (1)t=x^2+2x+2とする。 xがすべての実数値を とって変化するとき、 tのとり得る値の範囲を求めよ。 (2)nをaを用いて表せ。 ご協力お願いします(;人;) 三角関数を教えてください 問)-π/2≦θ≦π/2のとき、sin^2θ+sinθはθ=( A )において最大値( B )をとる。A・Bに適切な数値をいれよ。 です・・・ cos^2θ+sinθ=1-sin^2θ+sinθまではわかったのですが、範囲がわかりません。回答には、-π/2≦θ≦π/2より-1≦x≦1と書いてあるのですが、なぜ-1≦x≦1になるのですか。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など