長方形窓の立体角投射率
現在、立体角投射率について学んでいます。
長方形の立体角投射率で悩んでおり質問させてもらいました。
光源面と受照面が垂直の場合に
立体角投射の法則
U=1/π∫s(面積S) cosθcosβ/r^2 dS
を適用すると、図からcosβ=z/r, cosθ=y/r, r=√(x^2+y^2+z^2), dS=dxdy
であるから
Uv=1/π∫0~x∫0~y yz/x^2+y^2+z^2 dxdy
=1/2π(tan^-1 x/z - z/√(z^2+y^2)・tan^-1 x/√(z^2+y^2)
となっています。(表記が分かりにくくすみません。)
ただ、図からはr=√(y^2+z^2)としか読み取れないため、なぜ
r=√(x^2+y^2+z^2)になるのかが分かりません。
また、
Uv=1/π∫0~x∫0~y yz/x^2+y^2+z^2 dxdy
r=√(x^2+y^2+z^2)と仮定したとしても本来ならば
Uv=1/π∫0~x∫0~y yz/(x^2+y^2+z^2)^2 dxdyになると思うのです。
様々な参考書を見たところ
1/2π(tan^-1 x/z - z/√(z^2+y^2)・tan^-1 x/√(z^2+y^2)
の式はどうもあっているみたいなのでそれ以外の部分について修正などがありましたら教えていただけないでしょうか。
私に数学力がもっとあれば逆に計算していけばよいのですが・・・
お礼
回答ありがとうございます。