締切済み ボレル可測ではないルベーグ可測な集合 2013/01/08 00:44 ボレル集合でない可測集合の作り方は極めて病的と聞きましたが、その例はどのようなものでしょうか? よろしくお願いします。 みんなの回答 (1) 専門家の回答 みんなの回答 noname#199771 2013/01/08 12:27 回答No.1 参考URL2頁のA 参考URL: http://www-an.acs.i.kyoto-u.ac.jp/~kigami/analysis1ex9a.pdf 質問者 お礼 2013/01/09 13:40 ありがとうございます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ボレル集合族について 「『ボレル集合族B(R^2)』をσ-加法族の定義からはじめる形で定義しなさい」という問題があったのですが、どうやっていけばよいのか全く分かりません。『ボレル集合族』や『σ-加法族』は分かるのですが…。どなたかお詳しい方、よろしくお願いします。 ボレル集合族って何ですか??? ボレル集合族を、イマイチ上手く捉えられません。 頭の悪い自分なりに考えたのですが、 自分の解釈が正しいのか全く分かりません。 指摘お願いします。 ちなみに自分なりの解釈↓ 全体集合Ω={ω1、ω2、・・・・・} Ωの元の個数はM個 Ωの部分集合の全ての集合F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・} Fの元の個数は2^M個で、FはΩのσ加法族 A⊂Fがあるとき、Aの次に、Aを含む最小のσ加法族:Bが存在する。 このBが、ボレル集合族で、ボレル集合族の元をボレル集合という。 つまり↓ Ω={ω1、ω2、・・・・・} F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・} A⊂F A={・・・・・・・} B={A、・・・・・・・・・・} BはAのσ加法族 C={A、B、・・・・・・・・・・} CはBのσ加法族 D={A、B、C、・・・・・・・・・・} DはCのσ加法族 E={A、B、C、D、・・・・・・・・・・} EはDのσ加法族 ・ ・ ・ A∊B∊C∊D∊E・・・で、 B、C、D、E・・・はAを含むσ加法族で、 B、C、D、E・・・のうち最小なものはBなので、BはAのボレル集合族である。 ってことですかね??? よく分からないのは、ボレル集合族の条件に、Ω∊B とありますが、 私の解釈だと、Ω∊B となっていません。 ???って感じです。 ちなみに私の解釈だと、全ての集合には、そのボレル集合族が存在します。 で、ある集合がボレル集合族ということは、その集合の元を集合とする集合があるってことです・・・? 頭が悪いので、むちゃくちゃ簡単に教えてもらわないと理解出来ません。 図書館で確率論の教科書を色々呼んだんですが、難しく書かれてあって、???です。 助けて下さい。 2次元ボレル集合について すみません、教えてください。 2次元のボレル集合、B(R^2)は、1次元ボレル集合2個の直積、B(R)×B(R)とは 違うものということでよかったでしょうか。 よろしくおねがいします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ボレル集合体に含まれないRの部分集合 ボレル集合体に含まれないRの部分集合の具体例を教えていただきたいです。 ルベーグ可測集合ってなんですか??? ルベーグ可測集合を上手く捉えられません。 頭が悪いので簡単に説明して下さい。 今の自分の解釈は、 長さや面積や体積を持つ図形はどんな集合と言えるか?↓ ルベーグという名前の人が、これら(の図形)は測ることが出来るので、 長さや面積や体積を持つ図形の集合を「ルベーグ可測集合」と名付けた。 長さ確定図形・・・・・・・・・・・・ 1次元ルベーグ可測集合 面積確定図形・・・・・・・・・・・・ 2次元ルベーグ可測集合 体積確定図形・・・・・・・・・・・・ 3次元ルベーグ可測集合 という。 私の疑問は、Q1.長さや面積や体積を持つ図形以外に、ルベーグ可測集合に属するものは無いのか??? ということと、 Q2.「全ての図形はルベーグ可測というわけではない」 とは、どういう意味なのか??? ということです。測ることが出来ないくらい巨大な(宇宙サイズ?)図形に対して言ってるんですかね??? ちなみに、 面積(体積)がゼロの図形は、面積(体積)が0で確定しているので、面積(体積)を持つというそうです。 ってことは、面積(体積)0の図形はルベーグ可測集合に属しますよね? 面積が0の図形とは、円盤じゃなくて円周のこととか、 体積が0の図形とは、壁の無いお家(柱、骨組み)のこととか・・・ですか??? なんか的外れなことを言っていたらすみません・・・・ すっごく分かりやすく教えて下さい。 ルベーグ可測集合 ルベーグ可測集合は常に有界集合ですか? ボレル集合族についての証明 次の問題の証明を教えてください。 R上のボレル集合族をβ(R)、CをRの閉集合全体の集合とするとき、σ(C)=β(R)を示せ。 ルベーグ積分 *可測集合 次の問題を教えてください! 可測集合A⊆R(実数)でm(A)>0だが任意の実数x<yに対して(x,y)⊆not Aとなるものの例をあげよ。A=R/Qを考える。 お願いします>< σ集合体はボレル集合体の特別な集合体? ボレル集合体の定義は 「Xを集合とし,B∈2^Xとする。この時Bが (i) B≠φ (ii) A∈B⇒A^c∈B (iii) A_k∈B(k∈N)⇒∪[k∈N]A_k∈B を満たすならばBをX上のボレル集合体という」 σ集合体の定義は 「BがX上のボレル集合体とする。この時Bが (i) X∈B (ii) A∈B⇒A^c∈B (iii) A_k∈B(k∈N)⇒∪[k∈N]A_k∈B を満たすならばBをX上のσ集合体という」 と解釈したのですがこれで正しいでしょうか? ボレル集合体について ある袋に赤色と緑色の玉がそれぞれ1個、青色の玉が2個入っている。袋から無作為に玉をひとつ取り出して玉の色を調べる。玉の色をそれぞれR,G,Bであらわす。青色の2つの玉は区別しない。 (問)確率を議論するためのボレル集合体を記述せよ。 という問題が分かりません。回答お願いします。 可測集合 可測集合S,Tに対して次が成り立つことを示す μ(S∩T)+μ(S∪T)=μ(S)+μ(T) お願いします>< 測度論;完備化、測度零集合について。 こんにちは、測度論(確率論)を勉強しているのですが、完備化について質問させてください。 まず、ルベーグ測度を考える上でなぜσ-加法族の完備化が必要となるのか? 例えばR上のボレル集合体はRの開集合全体の加算和、加算交差などから成る集合体で極めて多様な集合を含むはずですが、それに含まれない測度零集合がRに存在して、それらを付け加えることで完備になる、という理解をしていますが、ボレル集合体に含まれない測度零集合とはどんなものでしょうか?例を挙げていただけるとありがたいです。 即ち、B(R);R上のボレル集合体, μ;B(R)上の測度として N* = {N⊂R ; NはB(R)に属さず、N⊂A∈B(R) , μ(A)=0}となるN*の要素はどんなものでしょうか? ボレル集合体ではルベーグ測度を考えるのに不十分、という理由が今ひとつ分かっていません。 これはハイネ-ボレルの定理の矛盾? こんにちは。 『(ハイネ-ボレルの定理)コンパクト位相空間Xの任意の閉集合Aはコンパクトである』 というのを本で見かけました。 『実数空間Rの閉区間[a,b]はコンパクトである(ハイネ-ボレルの定理)』というのも見かけましたので「なるほど、Rはコンパクト位相空間だから[a,b]はコンパクトになるんだなあ。」 と思っていましたら その後に 『[例] 実数空間Rにおいて、R及び、開区間(a,b)はコンパクトでない事を証明せよ』 とも書いてありました。 Rは位相空間ですがコンパクトでなくても閉区間[a,b]はコンパクトになるのですか? 何かおかしくないですか? ハイネ-ボレルの定理に詳しい方ご解説をお願い致します。 ボレル σ-algebra こんにちは。ボレルσ-algebraがでてきてから全く分からなくなりました。σ-algebraの定義は理解しました。しかし、ボレルσ-algebraの定義(ボレルσ-algebraは実数上における最も小さいσ-algebra)と書かれてますが、最も小さいσ-algebraというのが全く分かりません。どういう意味なのでしょうか?また、実数上とでてますが、ここでなぜ実数が出てくるのでしょうか。σ-algebraの定義(3つの条件)と、これらとの繋がりが見えません。もし宜しければ、分かりやすく説明してください。且、例題があれば助かります。 ルベーグ積分の反例を教えてください Rは実数体とします。B(R)をボレル集合体。 [Prop] (R,B(R),λ)を1次元ルベーグ測度空間,G∈B(R),λ(G)<+∞,そして可測関数f_nをlim[n→∞]f_n=0とする。 この時,lim[n→∞]∫_G f_ndλ=0. の反例を挙げてください。 【測度論】Borel集合でない可測集合は零集合 Borel集合でない可測集合の存在はわかりましたが,ある本によると,そのような集合(Non-Borel measurable set)はすべて零集合(Lebesgue測度が0)だそうですが,どうすれば証明できるのでしょうか?よろしくお願い致します. 可測空間と位相空間の関係 基本的なことだと思うのですが、どうしてもわからず質問させて頂きます。 測度論を勉強しているのですが、可測空間と位相空間の関係がわかりません。 非空な集合Xを用いて、そのσ代数Σと開集合系τをそれぞれ定義します。 そうするといずれもφとXを含み、(ド・モルガンの法則を用いて)有限のunionにもとじ、任意のunionにも閉じているので、同じようにみえます。 テキストを見ると、位相の構造の入ったσ代数をボレルσ代数としていますが、ボレルσ代数にならないσ代数が存在しない気がします。 初歩的なことかもしれなく恐縮ですが、教えていただければと思います。 可測集合の測度について ユークリッド空間の可測集合Eの測度が>0のとき Eの内点は存在するでしょうか? Borel集合の例 「実数直線R上のボレル集合体 B(R) は、R 内の任意の区間を含む最小の完全加法族である」のは正しいと思いますが、実数直線上の完全加法族で、B(R)を真に含んでいるものの例はあるのでしょうか? (ただし、Rには通常の位相を入れるものとします。) ルベーグ積分範囲 非可測な集合が存在すると仮定とする。この時、関数が可測であることと、全てのa∈Rに対して集合E(f=a)が可測集合であることは同値か同値でないか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 今も頑なにEメールだけを使ってる人の理由 日本が世界に誇れるものは富士山だけ? 自分がゴミすぎる時の対処法 妻の浮気に対して アプローチしすぎ? 大事な物を忘れてしまう 円満に退職したい。強行突破しかないでしょうか? タイヤ交換 猛威を振るうインフルエンザ カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。