μ((a,b))=∫[a..b]x^2dx (-∞<a<b<∞)は何故,全ボレル集合体B(R)の一意的測度?何故μ({0})=0なの?
こんにちは。よろしくお願い致します。
測度の定義は
(Ω,B)を可測空間(BはΩ上σ集合体)とする時,fが
(i) ∀b∈B,f(b)∈[0,∞],f(φ)=0.
(ii) f(∪[k=1..∞]b_k)=Σ[k=1..∞]f(b_k) (B∋b_1,b_2,…は互いに素)
を満たせば(Ω,B)上の測度という。
ボレル集合体の定義は
位相空間(X,T)においてσ(T):={B;T⊂B,BはX上のσ集合体}をB(X)と書き,X上のボレル集合体という。
有限加法族の定義は
(i) Ω∈B, (ii) b∈B⇒b^c∈B, (iii) b,c∈B⇒b∪c∈B.
の時,BをΩ上の有限加法族という。
a finite measureの定義は
(i) Bが有限加法族, (ii) fは(Ω,B)上の測度, (iii) f(b_1∪b_2)=f(b_1)+f(b_2) (B∋b_1,b_2は互いに素)
の時,Bを(Ω,B)上のa finite measureという。
a σfinte measureの定義は
(i) fは(Ω,B)上のa finite measure, (ii) Ω=∪[i=1..∞]b_i且つf(b_i)∈R (B∋b_1,b_2,…は互いに素),
の時,fを(Ω,B)上のa σfinite measureという。
です。
[Q] Define a measure μ on open intervals in R by
μ((a,b))=∫[a..b]x^2dx (-∞<a<b<∞)
(1) Why does this uniquely determine the measure μ on all of B(R)?
(2) Show μ({0})=0. (Be specific)
(3) Is μ a finite measure? σ-finite? Why?
という問題です。
(1)の「何故これが一意的に全B(R)(ボレル集合体)上の測度μを決定するのか?」の意味が分かりません。
1次元ボレル集合体B(R)とはσ(T):={B∈2^R;T⊂B (BはR上のσ集合体)}(Tは開集合全体の集合)だと思います。
全てのB(R)だから
K_1={(a,b)∈2^R;a,b∈R}や
K_2={[a,b)∈2^R;a,b∈R}や
K_3={(a,b]∈2^R;a,b∈R}や
K_4={[a,b]∈2^R;a,b∈R}と置くとユークリッド空間Rの位相は
T_0={φ,R},
T_1={∪[λ∈Λ]G_λ;G_λ∈K_1},
T_2={∪[λ∈Λ]G_λ;G_λ∈K_2},
T_3={∪[λ∈Λ]G_λ;G_λ∈K_3},
T_4={∪[λ∈Λ]G_λ;G_λ∈K_4},
T_5=2^R
はいずれもRの位相になると思いますので少なくとも
B(R)は6種類が考えられると思います。
これ以外にもB(R)はあるのでしょうか?
あるのならどんな位相が考えられるのでしょうか?そして網羅しつくした事をどうやって示せばいいのでしょうか?
そして全B(R)上の測度μはこのμ唯一つしかない事はどうやって示せばいいのでしょうか?
とりあえず,自力でやってみました。。
このμの他にB(R)(仮に位相はT_0としてみて)上の測度μ'があったとすると
B(R)=σ(T_0)は∩[B∈{B;T⊂B,BはR上のσ集合体}]B={φ,R}になると思います。
そしてμ'は測度なのだから
(i) ∀b∈B,μ'(b)∈[0,∞],μ'(φ)=0.
(ii) μ'(∪[k=1..∞]b_k)=Σ[k=1..∞]μ'(b_k) (B∋b_1,b_2,…は互いに素)
を満たさねばなりません,,,,
これからμ'がμ'(φ)=0 (∵測度の定義)は言えましたが
このB(R)は今{φ,R}なので区間を元に持ちませんので
μ'((a,b))=∫[a..b]x^2dx (-∞<a<b<∞)と書き表せようがないと思います。
問題文を誤釈してますでしょうか?
(2)については今,R上のσ集合体Bをopen intervalsにしているので
{0}=∩[n=1..∞](-1/n,1/n)∈Bと言えるから∩[n=1..∞](-1/n,1/n)はμ上で定義されていている。
それで
μ({0})=μ(∩[n=1..∞](-1/n,1/n))=Σ[n=1..∞]μ((-1/n,1/n))
=Σ[n=1..∞]∫[-1/n..1/n]x^2dx=Σ[n=1..∞][x^3/3]^1/n_-1/n
=Σ[n=1..∞]2/(3n^3)
となってしまったのですがこれは0になりませんよね。
何が間違っているのでしょうか?
(3)については
まずこのμがa finite measureを吟味してみますとa finite measureの定義から
まずσ集合体Bが有限加法族になっていないといけません。
しかし,ここでのσ集合体Bはopen intervalsで-∞<a<b<∞となっていますので
少なくともR∈Bを満たしませんからBは有限加法族になってません。
従って,このμはa finite measureではない。
次にa σfinite measureになっているかを吟味すると,
まずa finite measureになっていなければなりませんが
既にa finite measureでない事は判明済みなのでσfinite measureでもない。。。
と結論づいたのですがこれで正しいでしょうか?
すいません。ご教示ください。
お礼
ありがとうございました!