締切済み 数学 2012/07/09 21:57 Z/17Zで、位数が4の元を全て求めることを教えてください。 みんなの回答 (2) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2012/07/10 01:27 回答No.2 乗法群じゃないの? 位数 1 の元→ 1 位数 2 の元→ 16 位数 4 の元→ 4, 13 位数 8 の元→ 2, 8, 9, 15 位数 16 の元→ 3, 5, 6, 7, 10, 11, 12, 14 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 noname2727 ベストアンサー率35% (40/112) 2012/07/09 23:21 回答No.1 1は位数1 2は位数9 3は位数6 4は位数13 5は位数7 6は位数3 7は位数5 8は位数15 9は位数2 ・・・・・ 面倒くさいです。Z/5Zぐらいにしてください。 質問者 お礼 2012/07/10 00:25 ありがとうございます 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学 数学の問題です。 (1)x^2+1≡(mod19)を解け (2)a∈(Z/nZ)*の位数をdとする。a^k≡1(modn)⇔k≡0(mod d)を示せ。 (3)P=29で位数11の元は何個あるか。 求め方を教えてください 宜しくお願いします 数学の問題です。 代数の問題ですが、まったく分かりません。 数学は得意ではないのですが、わけあって代数の問題を解かなくてはいけないのです。 力を貸してください。 1 巡回群G=<a>が<a>=<a^m>(m∈Z)になるためには無限巡回群に対してはm=1,-1が位数nの巡回郡に対しては(m、n)=1がそれぞれ必要十分であること証明せよ。 2 位数24の巡回群G=<a>に対して、Gの生成元をすべて求めよ、また、Gの真の部分郡をすべて求めよ 記号の意味、内容も分からないので、詳しく教えて頂くとうれしいです。 お願いします。 群の位数について質問させてください>< 群の位数について質問させてください>< _ _ _ Z(18)={0,1,・・・,17} について _ _ _ _ _ _ _ _ U(Z18)={1,5,7,11,13,17}の元7、13の位数をそれぞれ求めよという問題なのですが、 _ |7|=18/(18,7)=18 と考えたのですが、答えは3でした。 どうして3になるのでしょうか? 教えて頂けると助かります。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 部分群 加法群Z60において次の部分集合によって生成された部分群を調べてください。 (1)<2,5> (2)<2,3,10> (3)<10,12,36> それぞれの数字の上に"-"をお願いします。 次を求めてください。 (1)Z60において、元12と35の位数を求めてください。 (2)Z32において、元25と30の位数を求めてください。 ここでも、元には"-"をお願いします。 位数36巡回群の生成元 位数36の巡回群 Z/36Z={0,1,・・・,35} の生成元となりうる元を列挙せよ。 わかりません。。よろしくお願いします!! 次の代数学の真偽を教えてください。(理由も添えて) 1.位数が素数である有限群は巡回群である。 2.有限アーベル群はすべて巡回群である。 3.巡回群はすべてアーベル群(=可換群)である。 4.Z/4ZとZ/2Z×Z/2Zは共に位数4のアーベル群である。 5.Z/4ZとZ/2Z×Z/2Zとは同型な群である。 6.アーベル群の部分群はすべて正規部分群である。 7.位数が同じ有限群GとG'は同型である。 8.位数が素数である有限群はアーベル群(=可換群)である。 自己同型群について。 Z:整数の作る加法群、Z/9Z:位数9の巡回群、p:Z→Z/9Z (自然な射影) とします。 (1)σ(p(1))=p(2)を満たすσ∈Aut(Z/9Z)を求めよ。 (2)Aut(Z/9Z)の位数を求めよ。 (3)Aut(Z/9Z)の元の位数として表れる数を列挙せよ。 以上が問題です。またAut(Z/9Z)は具体的にどのような写像になるのでしょうか? 解説付きでお願いします。 【代数学】位数2の元 代数学の本を読んでいて、練習問題の解説に以下のような記述がありました: pを素数とするとき、Z/pZは体だから、x^2≡1(mod p)なる元はpを法として-1ただ1つ。乗法群(Z/pZ)*において、先にみたように位数2の元はただ1つだから…(以下省略。Zは整数全体のなす環) この解説で「Z/pZは体だから、x^2≡1(mod p)なる元はpを法として-1ただ1つ」(*)という部分が理解できません。ただし、その後の文で「乗法群の位数2の元はただ1つ」とあるので、(*)は1以外でそのようなxは-1だけ(mod p)という意味ではないかと考えています。そこで以下の質問をさせていただきたいです。 1.一般に、体の乗法群には位数2の元は1つだけあるといえるでしょうか。その場合、なぜそういえるのかの説明またはヒントをいただけないでしょうか。 2.1の答えがnoの場合、反例があれば教えていただきたいです。 よろしくお願いいたします。 巡回群について 位数24の巡回群の生成元をすべて挙げたいのですが、位数24である巡回群というのがどのように考えたら良いのかわかりません! どなたか暇なときに、アドバイスお願いします!! 既約剰余類群の部分群について 群論の問題です。 大学のレポート課題ですが、途中までしかわからず困っているため、お時間のある方ご回答よろしくお願いいたします。 問 既約剰余類群(z/7z)^*の部分群を全て求めよ。 答 部分群の位数は群の位数の約数なので、1,2,3,6のどれかである。 ここまでしかわかりません、、 数学 (Z/3Z)/(x2 + 1)のx+2の元と、2x+1の元ってなんですか? 位数8の群の例 位数8の群の例を挙げよ(同値でないもの挙げなさい)。 という問題なのですが、 答えとして 巡回群Z_8,(Z_4*Z_2),(Z_2*Z_2*Z_2), 正2面体群D_4,4元数群Q であると思うですがこれは例では無いのだと思いまして、 この例の作り方を教えていただきたいと思いまして投稿いたしました。 どなたかわかる方お願いいたします! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 【応用解析】特異点 留数 位数について 特異点、留数、位数の求め方(考え方)を教えてください。 例えば f(z)=1/(z*sinz) についてその3つの解説お願い特異点、留数、位数の求め方を教えてください。 自分で考えたのは 特異点はz=0,sinz=0→z=nπ(nは整数)(これもあやふや) 位数はz=0は一次なので1位、sinz=nπはよく分からない 留数は1位とk位(k≧2)の場合の公式があるのでそこに入れるらしい(あやふや) こんな感じです。 宜しくお願いします。 群Gの元aの位数 35歳すぎにして、代数学の初心者です。 代数における群Gの元aの位数の意味がよくわかりません。位数って群の元の数ですよね?ってことは、元aが位数を持つということは、元aも群だということなのでしょうか?元aは群Gの部分群でないと、元aは位数を持たないのでしょうか? これがわからないので、「群Gの元aの位数がmnならばa^nの位数はmであることを示せ」などといわれても、ちんぷんかんぷんです。 どなたか、判りやすく教えていただける方がいましたら、よろしくお願いいたします。 代数系の勉強をしています。 代数系の勉強をしています。 しかし、まったくわかりません。 3次対称群の位数3の部分群の求め方や、各元で生成される巡回部分群の求め方、(R*,X),(z,+)とは何ですか? 丁寧に教えてください。よろしくお願いします。 対称群 nを2以上の自然数とする。 X:={0,1,2、・・・n-1}= Z/nとおく 0:X→Xを、a →3a mod n とする。 (1)0が単射となる必要十分条件をnについての言葉で表せ (2)0が全単射となる時、0とn元の置換とみて、0をSnの部分集合とみなす。 n=8のとき、0の位数を求めよ (2) 再びnを一般の自然数とし、(1)の条件が満たされているとする。(2)で定義されたSnにおける位数が、(Z/n)* における3の位数と等しいことを示せ (3)はまったく手がかりすらつかめませんでした・・・ めんどくさい場合は、(3)だけ回答お願いします。 わからないので教えてください、よろしくお願いします 数学 0<X≦Y≦Zである整数X、Y、Zについて以下の問いに答えよ (1)XYZ+X+Y+Z=XY+YZ+ZX+5を満たす整数X、Y、Zをすべて求めよ (2)XYZ=X+Y+Zを満たす整数X、Y、Zをすべてもとめよ。 (2)について質問したいんですが、解答に1≦XY≦3より (X、Y)=(1,3)のとき 3Z=1+3+z (X、Y)=(1,2)のとき 2Z=1+2+Z (X、Y)=(1,1)のとき Z=1+1+Z となっているんですが場合分けの意味はわかるんですが、なぜXY=3,2,1に分けると左側のZも3Z、2Z、Zと変化していくんですか??X+Y+Z≦3Zとなっているのだからすべて3Zではないんですか?? 群の位数の問題なんですが? 位数が偶数の群は位数2の元を持つんでしょうか? 群が位数2nの巡回群<a>ならば a^n を考えれば位数2の元になります。 それ以外に関しては、位数が小さい群ならばなんとなくイメージできるんですが一般の場合どうなるかうまく証明できません。 どなたかもしおひまであればお教え願えないでしょうか。よろしくお願いします。 代数学序論について… 次を求めよただし ord m a は m を法とする a の位数を表す (I)ord 15 7 (II)ord 19 13 ord15を法とする7の位数…なんですかこの記号は… まったく検討も着きません…どうか教えてやってくださいまし。 これをとくための参考資料など教えていただけると尚言いのですが…お願いいたします 代数学の問題です。 教科書などで調べたりしたんですが なかなか解けなくて困っています。 問 全ての元の位数が2以下である群は、 アーベル群であることを示せ。 詳しく教えてほしいです お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます