• ベストアンサー

範囲を絞る問題

3つの自然数a、b、cが3(a+b+c)=abcをみたしている このようなa、b、cの組は何個あるか、また、a+b+cの最大値はいくらか 答えはa≦b≦cにして、3(a+b+c)≦3・3c=9cとしてるのですが、これはaとbを3に置くと分かりやすいからですか? また、3(a+b+c)≦3・3c=9cのあとにいきなり abc≧aac=a^2cとなる と書いてあり、abcがaac以上なのは分かるのですがなぜいきなりこれが出たのでしょうか? 回答お願いします!

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

整数の問題で、3つの自然数a、b、cがあるとき、a≦b≦cと仮定して論議を進めるというのは常套手段。 これは、そうすると上手くいく、と割り切って憶えて置いたらよい。たとえ、問題でa≦b≦cと書いてなくても良い。 3数は平等だから、a≦b≦cと仮定しても、一般性を失わない。 a+b+c≦3c から abc=3(a+b+c)≦9c 。よって、c>0から ab≦9. つまり、(a、b)=(1、9)、(1、8)、(1、7)、(1、6)、(1、5)、(1、4)、(1、3)、(1、2)、(1、1)、 (3、3)、(2、4)、(2、3)、(2、2)。← 数えミスはチェックしてね。。。。。w 後は、その各々の場合のcの値を求めるだけ。 全てのものが条件に適するかどうか分からない。 従って、まず必要条件としての値を求め、それが十分条件でもあることを確認する。

noname#151285
質問者

お礼

「abc=3(a+b+c)≦9c 。よって、c>0から ab≦9」 なんでですか?教えていただければ嬉しいです!

その他の回答 (2)

回答No.3

この程度は、簡単に理解してくれよ。 >abc=3(a+b+c)≦9c 。よって、c>0から ab≦9 abc≦9c → c(ab-9)≦0。

noname#151285
質問者

お礼

馬鹿なので...ありがとうございます!

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「答えはa≦b≦cにして」ってどういう意味なんだろう. 特に「して」がどういうことを指すのかがわからん. 「aとbを3に置」いても, 3(a+b+c)≦3・3c=9c は出ないよね. で, ここで 9c と c を因数に持つ形になってるから, 「a の範囲をしぼる」ために a^2c を出してるんじゃないかな.

noname#151285
質問者

お礼

対称式だからあとで入れ替えられるのではじめに範囲を決めたんです! 3・3cは9cじゃないんですか? 「9c と c を因数に持つ形になってるから, 「a の範囲をしぼる」ために a^2c を出してるんじゃないかな. 」 どういう意味か理解できないので説明していただけたら嬉しいです!

関連するQ&A