- ベストアンサー
ab+1≦abc≦bc+ca+ab+1
ab+1≦abc≦bc+ca+ab+1 を満たす自然数a,b,cの組をすべてもとめよ ただしa>b>cとする どなたか解答、解説お願いします
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
ab+1<=abcより、ab(c-1)>=1 c=1は上式を満たさず。したがってc>=2。このとき、 ab(c-1)>=ab>=1。 以上から、a>b>cも考慮し、a>=4、(a>)b>=3 ・・・(1) abc<=bc+ca+ab+1より、bc+1>=a(bc-b-c) ・・・(2) a>b(>0)なので、 bc+1>=a(bc-b-c)>b(bc-b-c) 即ち (b^2-2b)c<b^2+1 ・・・(3) (3)について、b=3,4,・・・と調べてゆくと、 ・b=3のとき、c<10/3となり、(1)も含めて考えると、c=2 ・b=4のとき、c<17/8となり、(1)も含めて考えると、c=2 ・b>=5のとき、c<2となり、c>=2を満たさないので解なし 上記場合わけにつき、aの値を考えると、 ・c=2,b=3のとき、(2)よりa<=7 つまりa=4,5,6,7 ・c=2,b=4のとき、(2)よりa<=9/2 a=4=bとなり解なし 以上から、答えは (a,b,c)=(4,3,2)、(5,3,2)、(6,3,2)、(7,3,2)
その他の回答 (1)
- 112233445
- ベストアンサー率40% (6/15)
回答No.2
途中から省略します 与不等式の3式をabで割ると 1+1/ab<=c<=c/a+c/b+1+1/ab これより、c=2,3となる。 (1)c=2のとき、(2)c=3のとき、 でa,bを決める。
質問者
お礼
回答ありがとうございました 答えにたどりつくことができました
お礼
回答ありがとうございます 非常にわかりやすい解説ありがとうございました