- ベストアンサー
場合の数 漏れなく数える方法
8個のみかんをA~Cの3つのかごに分けて入れたい。 かごに1つも入れない場合を考えて何通りあるか答えよ。 という問いなのですが・・ まず、3つのかごへの分かれ方ですよね。 8、0,0 7、1、0 6、2、0 6、1、1 5、3、0 5、2、1 4、4、0 4、3、1 4、2、2 まではすんなりいくのですが最後の3,2,2の見出し方がどうも苦手です。 この類、いつも順序良くいき、最後の漏れが決まってこのパターンです。 漏れなく数えるコツ、あればどなたかご教授ください。 よろしくお願いします。
- みんなの回答 (6)
- 専門家の回答
質問者が選んだベストアンサー
#1さんの回答が、3つのかごを区別するする場合の場合の数の求め方の定石で、「重複順列」という名前が付いています。 ちなみに区別しない場合の求め方は、「重複組合せ」という名前があり、公式もありますが、「重複順列」ほどには考え方も公式も単純ではないので、よく理解できないまま、生兵法で使うくらいなら、質問者さんのように、数えてみるで通すのも、「漏れなく」数えられれば、立派な手です。 「重複順列」「重複組合せ」の考え方・公式については、次のサイトの、 http://www.geisya.or.jp/~mwm48961/koukou/index_m.htm それぞれの項目(目次が探しにくいので、念のため、リンクを書いておきます) http://www.geisya.or.jp/~mwm48961/kou2/rep_permu.htm http://www.geisya.or.jp/~mwm48961/kou2/s1combi5.htm が、短い割には、とても解りやすいと思うので紹介しておきます。 で、どうやって「漏れなく」数えるか、ですが、 #1さんの言う、 >数え漏れを無くす。それは注意するしかないですよ。 >冷静にやっていくしかないんですよ~。 は、それ自体は全く正しく、えらいマスコミやお役人や学校の先生がよくいう言葉ですが… 残念ながら、それを説教し続けることで、例えば、交通事故や医療事故などを、減らすことができた、と言う話は、あまり聞いたことがない。 実際に減らせたところは、具体的、かつ、システムとして意味のある、何らかの対策ができたところ、例えば、住宅街の中の細い通りなどでは、路面に障害物やデコボコを意図的に作ったり、歩道を広くとって、車道を狭くしたり、交差点を実際に見える以上に、見えにくく感じさせたりすることで、スピードを自然に落とさないといけないようにする、すると、自然に事故は減り、起こっても大事故になりにくい、通り抜けの車が減って、交通量自体が減るので、さらに効果がある、こういうことができたところです。 精神論でミスが減らせる、と思うのは、「できる」人が、自分もそういう対策をしているのに、無意識なので自分で気づいていない(数学は、一旦、できると当たり前になってしまう教科なので、こういうのは実に多い)ため、ついつい、陥りやすい罠だったりします。万が一、意識的に気づいているのに、教えないとしたら、とんでもなく根性が悪いということに^^、(難しいチェックが必要で、初級者は混乱するから、そこを配慮して、というようなことがある場合も、ありますが^^) 前置きが長くなりましたが、ここでは、どうすればいいのか、というと、 まず簡単にできるのが、並べていくときに、 最初か、早い段階で、終わりがどうなるかをチェックすること、 並べていきながら、考えると、だと、気持ちが並べることに かなり向いているので、落ち着いて考えれば、落とさない場合を、 うっかり見逃したりしやすくなる、その対策です。 逆に早い段階でやると、見落としやすいことというのもありますが、 並べる最後のところで、そういうチェックに一切気が向かないという ことはないでしょうから、結局、ダブルチェックをすることになり、 見落とす可能性は、確実に減らせるでしょう。 これだけだと、精神論より半歩くらいは、踏み込んではいても、 まだ、ちと甘いところがあります。最後を早めにチェックは同じでも、 そこでの、もっと具体的なチェック方法として、 一番、最後が、たまたま、どんな形になるか、で、なく、 全体の流れとして、どんな状態になっていないと困るかを考える、 そう見ると、後になるほど、全体に均等にばらまくようになって いるんだな、ということが解るのは、そんなに難しいことじゃない、 そこで、究極の場合を考えると、8÷3=8/3=2と2/3ずつ分かれる、 ただ、整数個ずつじゃないといけないから、(3,3,2)が最後になるな、 こういうことを考えると、相当な割合で見落としが防げる、 「できる」人は、最初から、多くの場合、無意識でこういうチェックをやっていたり、ミスした経験から、編み出したりしています(これも結構無意識だったり、気づいたときは意識的でも無意識になってしまう、まぁ、無意識になるくらいに、使い込まないと、数学の知識は使いこなせない部分が多いので、仕方がないのですが、その分、「できる」人の言葉が、できない人に伝わりにくくなる面もあったり…) 質問者も、ただ「漏らしてしまう」と悩むだけでなく、できるだけ「何故なんだろう」それ以上に「どうしたら防げるんだろう」ということを、考えるようにしてください。その場その場で、ふさわしい答が得られるとは限りませんが、こういうことを考え続けていると、考える回路というのが、脳内に作られて、いずれできるようになったり、人に説明してもらったことに、うまくできかけの回路が、ピッと反応するようなことがあると、ただ、説明してもらった、解った、という以上に、脳内で定着しやすくなります。
その他の回答 (5)
- B-juggler
- ベストアンサー率30% (488/1596)
No.1です。もういいかなぁ?と思って書きます。 えっと、この手の問題は、3^8だけでは解けない。 No.5さんご指摘のとおりです。 なぜか? みかんに区別がないから。 区別して数えているから、区別をなくしてあげないといけない。 No.4さんが、σ(・・*)のことをあげて、書いてくださってますが、 評価するを押しているのはσ(・・*)です^^; えっとね、コツは自分で見つけるものなんですよ。 6,7年前くらいかな、最後倒れる前は。 代数の非常勤やっていたころ、感じていたのは だんだんと自分でやろうとしなくなってきているのかなぁ?と、思っていました。 こういうサイトができたのもここ数年だよね。 こういうところで、聞いてしまって、自分で考えない(失礼)で 答えだけ合わせに来る学生が多くなったんですよ。 そうなって欲しくないんです。 ちょっときついかもしれないんだけど、自分で「試行錯誤」やって 自分の「コツ」を見つける。 それを惜しんではならないと思っているんです。 それは最初からできる人間なんていないよ。 σ(・・*)も、ぱっと(3,3,2)は出るかどうか分からない。 やってきた経験でしかない。これで好いと言うのはね。 3^8 ででないのは、上にも書いたから、どうやったらでるか、 自分で見つけてみて? 意地悪しているんじゃないけど、わざと間違えた答え書いたりもしますよ。 #本気で間違えてるときもあるけどね^^; 最後は自分なんだよ。 今は、それが変わっちゃった。 最後は「塾の先生」「公式」「NET」。 それじゃいけないよ~。 σ(・・*)は、大きい順に、8のとき後は0,0だ。 7のとき、後は1,0だ。 6のとき、後は2つだから、2,0 か 1,1だな。 こういう風に進めて、重複しないように気をつけながら、 4のとき 残り4つ 4,0 3,1 2,2 3のとき、重複しないのがあるかな? 3,3,2 があるか。 とします。 試行錯誤して、何十回もやって、何回も間違えて、何回も当てて、 何回も怒られて、今があるんです。 自分でやる事を投げちゃダメだよ。いいかな。それだけ。 (=^. .^=) m(_ _)m (=^. .^=)
質問者さんへの疑問への回答でありませんが一言。 今回の問題の場合、みかんには区別がないと思うのが自然です。 他の回答者さんの答えで、3^8という答えがありますが、 これは、みかんにひとつひとつに区別がある場合の、 場合の数かと思います。 難しいですよね~、場合の数って。
- yyssaa
- ベストアンサー率50% (747/1465)
左端の数を3にするなら、4、2、2以上で3の入った並びを 選び出し、その並びの左端を3に並べ替えて並べてみて、それら 以外の組合せを探し出すしかないでしょう。 5、3、0は3、5、0に4、3、1は3、4、1に並べ替えて おき、4、2、2以上と同じ要領で 3、5、0 3、4、1 3、3、2 を書き出し、 3、5、0と3、4、1は重複しているので除き、3、3、2 だけを4、2、2の下に書き加えます。 以下、左端を2以下にする場合も同じようにやるしかないと 思います。
- f272
- ベストアンサー率46% (8627/18450)
漏れなく数えるコツは,数え上げる規則を決めてそれにそって順序良く数えることです。 今の例だと 8,0,0から始める。最初が8なのはこれだけ。 最初を7にして7,1,0。二番目を減らして7,0,1にするのは,二番目より三番目が大きくなるのでできない。 次は最初を6にして6,2,0。次は二番目を減らして6,1,1。次の6,0,2はだめ。 次は最初を5にして5,3,0。次は二番目を減らして5,2,1。次の5,1,2はだめ。 次は最初を4にして4,4,0。次は二番目を減らして4,3,1。次は4,2,2。次の4,1,3はだめ。 次は最初を3にして3,3,2。次の3,2,3はだめ。 最初を3のときに3,5,0とか3,4,1を考えないのは一番目より二番目が大きくなるからです。 次は最初を2にするけど2,2,2の時点でだめなのでおしまい。
- B-juggler
- ベストアンサー率30% (488/1596)
こんばんは。多分書き間違いだと思うけど、 {3,3,2}のパターンだと思う。 数え漏れを無くす。それは注意するしかないですよ。 冷静にやっていくしかないんですよ~。 でね、これは、ABCのかごを区別するんでしょう? とすれば、別の方法を考えればいいわけです。 #こっちの方がホントは大事だよ。 みかんに順番をつけるとしますが、 最初のみかんが入るかごは、ABCの三種類、 次のみかん(2番目)もやはり三種類。 同様に考えると、全てのみかんは、三種類のかごのどれかに入るので、 3^8 とおり。 こっちの考え方もありますよってことで。 問題によっては圧倒的にこっちの方が楽ですよ。 (=^. .^=) m(_ _)m (=^. .^=)
お礼
回答者さまのおっしゃるとおり、回路にピッと反応する、 それが全く反応しなかったので少し放置状態になりましたが 頭を真っ白にいて今読むと、言われている事が良く理解できました。 サイトも参考書などよりもわかりやすかったです。 コツも参考にさせていただきます、 ご丁寧に、またほかの方もありがとうございました^^