- ベストアンサー
有限体の元の追加した体もある条件で有限体の証明
体Kの上の代数拡大体の元a(1)、---、a(n-1)、a(n)について、a(1)、---、a(n-1) がKの上に分離的であれば,K(a(1)、---、a(n-1)、a(n))はKの単純拡大であるという定理の証明にあたり、まずKが有限体であれば,K(a(1)、---、a(n-1)、a(n))も有限体であるとありますがこれはどう説明できますか。Kが有限体ならK(a)も有限体がいえればいいと思いますが。
体Kの上の代数拡大体の元a(1)、---、a(n-1)、a(n)について、a(1)、---、a(n-1) がKの上に分離的であれば,K(a(1)、---、a(n-1)、a(n))はKの単純拡大であるという定理の証明にあたり、まずKが有限体であれば,K(a(1)、---、a(n-1)、a(n))も有限体であるとありますがこれはどう説明できますか。Kが有限体ならK(a)も有限体がいえればいいと思いますが。
お礼
そうでした。こう展開してしまえば、少なくとも有限の場合/有限の場合で有限体となることはほとんど自明とわかります。 どうもありがとうございました