ベストアンサー 三角錐に内接する球 2011/11/21 19:55 AB=AC=AD=6 BC=CD=DB=6√2 である三角錐ABCDに内接する球の半径を求めよ この問題の解答と解法を教えてください お願いします みんなの回答 (6) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ONEONE ベストアンサー率48% (279/575) 2011/11/21 21:30 回答No.1 体積を2通りの方法で表します。 1. (1/3) x (底面積) x (高さ) 2. (1/3) x (△ABC + △ACD + △ADB + △BCD) x (内接球の半径) 1と2が等しいので内接球の半径が計算できます。 質問者 補足 2011/11/23 21:51 式を書いていただけるとありがたいです 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (5) Har-mo-nize ベストアンサー率57% (12/21) 2011/11/22 03:47 回答No.6 この問題の場合、△ABC、△ACD、△ADBの3辺の比が1:1:√2の直角二等辺三角形であるので、そのことを利用してもよいと思います。 頂点Aから平面BCDまでの距離は2√3 (三角錐の体積の式などから求めるのが一般的。点と平面との距離から求めてもよい。) 内接球の中心をI、半径をrとすると、AI=(√3)r、点Iから平面BCDまでの距離はr 従って 2√3 = (√3)r+r #1が最もシンプルで一般性のある解法だけどね。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 banakona ベストアンサー率45% (222/489) 2011/11/21 23:20 回答No.5 3(√94)/4 って7以上あるよ。直径にしたって長すぎる。 #1でも#2でも答えは同じ。半径は3-√3 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22_ ベストアンサー率67% (2650/3922) 2011/11/21 23:03 回答No.4 考え方は#1さんので良いと思います。記号は#2さんの決めた記号を使えば S=△BCD=(1/2)BC*BDsin60°=18√3 余弦定理より cos∠ADE=(AD^2+DE^2-AE^2)/(2AD*DE)=7(√6)/24 sin∠ADE=√{1-(cos∠ADE)^2}=(√282)/24 AH=ADsin∠ADE=(√282)/4 三角錐体積V=S*AH/3=9(√94)/2 S1=△ABC=△ABD=△ACD=(1/2)AB*AC=18 (∵△ABDは直角二等辺三角形) V=(1/3)(3S1+S)r より 内接球の半径r=3V/(3S1+S)=3(√94)/4 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 yyssaa ベストアンサー率50% (747/1465) 2011/11/21 21:51 回答No.3 △BCDの中心と各辺との距離aを求めます。△BCDは一辺が6√2の正三角形なので a=(1/2)*(6√2)*tan(π/6)=(3√2)*tan(π/6)・・・(1) 次に点Aと辺BCの中点との距離bを求めます。三平方の定理より b=√{6^2-(3√2)^2}・・・(2) △BCDの中心をE、辺BCの中点をFとすると△AEFはEF=a、AF=b、 ∠AEF=π/2の直角三角形になります。 三角錐ABCDに内接する球の半径をRとし、辺AE上にEG=Rとなるように点Gを定めると、点Gから辺AFに下ろした垂線GHの長さもRとなります。 △AEFと△AGHは相似ですから、AE=cとしてc=√(b ^2-a^2)・・・(3) b/a=(c-R)/R・・・(4)となります。 この(4)に(1)~(3)で求めたa、b、cを代入してRを計算することが出来ます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 banakona ベストアンサー率45% (222/489) 2011/11/21 21:34 回答No.2 BCの中点をEとすると、対称性から球の中心Oは△AED上にある。 Aから△BCDに垂線を下ろすと、対称性からOはこの垂線上にある。 垂線と△BCDの交点をHとすると、△AEDの概形は右図のようになる(球とADが接しないことに注意)。 △ABEで三平方の定理を使うと、AEが求まる。 △BCDは正三角形だからDEの長さは簡単に求まる。なんなら△DBEで三平方の定理を使ってもいい。 Hは△BCDの重心に一致するからEHの長さも求まる。 △AEHで三平方の定理を使うと、AHが求まる。 球と△ABCの接点をJとし、球の半径をrとすると△AOJ∽△AEHから方程式を立てることが出来る。 ここからrを求める。 解法は示したから解は自分で出して。 画像を拡大する 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 球に関する問題 AB=AC=AD=6,BC=CD=DB=6√2である三角錐ABCDに内接する球の半径を求めよ。 という問題なんですが、球の半径を出すには三角錐ABCDの体積が必要かと思うんですが、それを求めるプロセスと、体積を出してからどうやって半径を求めればよいか、教えてくださいm(_ _)m ちなみに答えは3-√3です。よろしくおねがいします。 高校 三角錐に内接する球の半径 AB=AC=AD=6、BC=CD=DB=6√2である三角錐に内接する球の半径を求めよという問題で ボクは△BCDに内接している円と考え △BCDの面積を「2/1×6√2×6√2×sin60」で求め △BCD=2/1×r×(3×6√2)で計算したのですが 何度やっても答えが合いません… どこか間違っているかわかる方解説よろしくです。 実際の答えの解説は本に載っているので大丈夫です。 四面体の問題です。 AB=AC=AD=5 BC=CD=DB=6 である四面体ABCDにおいて、辺BCの中点をMとする。 四面体ABCDに対して、 (1)内接する球の半径 (2)外接する球の半径 (3)どの辺にも接する球の半径 を求めよ。 という問題です。図すら書けないし、解き方も分かりません。 教えて下さい。よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 球の半径を求める 東大の過去問らしいのですが、質問を受けて数日間 考えて、糸口さえつかめません。 どなたか解決法教えていただければ 幸いです。 問題は、半径 r の球に内接する四面体 ABCDがある。BC=CD=AD=AC=2 AB=√3 の時、半径 r を求めよ というものです。 よろしくお願いします 四面体に内接する球の半径 『AB=1、AD=2、AE=3の直方体ABCD=EFGHがある。四面体B-AFCに内接する球の半径を求めよ』という問題がありました。三角形AFCの面積と頂点Bから三角形AFCに下ろした垂線の長さなどは求められたのですが、そこからの方針が全くわかりません。体積を求めてどうにかするのでしょうか?よろしくお願いします。 円に内接する四角形の問題 四角形ABCDは円に内接し、AB=2、BC=3、CD=4、cos∠ABC=-1/4、を満たす。設問から、AC=4、AD=2、BD=7/2、四角形ABCDの面積S=7√15/4であることが分かりました。 ここで対角線AC、BDの交点をPとおくと、sin∠APBはいくらか?という問題なんですが、解答には 「∠APB=θ」とおくと S=1/2AC・BDsinθ が成り立つので... とあります。どういう過程でこの式が導かれたのでしょうか? 図形と計量 円に内接する四角形ABCDにおいて、AB=4 BC=3 CD=1 ∠ABC=60s の時 1.ACの長さ 2.∠ADC=θとおくとき cosθ 3.ADの長さ 4.円の半径 四角形ABCDの面積 上記の問題の解答 解説がなく、解けても合ってるのか分かりません(*_*) よろしくお願いします。 図形と計量 解答がなく困ってます。どなたか添削お願いしますm(_ _)m 円に内接する四角形ABCDにおいて、AB=4、BC=3、CD=1、∠ABC=60゜のとき、次の値を求めなさい。 1.ACの長さ 2.∠ADC=θとおくとき、cosθ 3.ADの長さ 4.円の半径 5.四角形ABCDね面積 *自己解答* 1.余弦定理より AC^2=AB^2+BC^2-2*AB*BC*cosB→AC=√13 2.円に内接する四角形なので、∠ABC+∠ADC=180゜→∠ABC=60゜→∠ADC=120゜となる。よってcos120゜=-1/2 3.余弦定理より AC^2=CD^2+AD^2-2*CD*AD*cos120゜→AD=-4,3→AD≧1なので AD=3 4.正弦定理より AC/sin60゜=2r(外接円の半径rとする)→r=√13/√3 5.四角形ABCDの面積=△ABC+△ADCである。 【△ABC=1/2*AB*BC*sin60゜】+【△ADC=1/2*AD*DC*sin120゜】={15√3}/4 社会人になってからの勉強です。 間違いがありましたら 解説と併せてよろしくお願いします。 数学A 円に内接する四角形 四角形ABCDは円に内接し、さらにAB//CDとなる。このときAD=BCとなることを示せ。 この問題を解いてください。m(_ _)m 円に内接する四角形 円に内接する四角形ABCDにおいて、BC=2,CD=3,∠DAB=60°、∠CDA=90°とする。 このとき、対角線ACとBDの長さ、および、辺ABとDAの長さを求めよ。 という問題です。 BDは余弦定理で、ACは正弦定理で外接円の半径を出し、それを2倍することで求められました。 その次はどうすれば良いのでしょうか。 よろしくお願いします。 球の問題 半径Rの球があり、四点ABCDがAB=√3、BC=CD=AD=2で球の上にあるそうです。このときに球の半径を求めなさい…と言う問題がありました。 球の方程式をx^2+y^2+z^2=R^2として、ABCDの座標を未知数でおいてみたところ、やたらと未知数が増えて解けません。どうすればよいのでしょうか?なんかうまい方法があるのでしょうか? 四角形に内接する円について 円が四角形ABCDに内接するときAD+BC=AB+DCとなるのは簡単に証明できたのですが、 逆、つまり、”AD+BC=AB+DCならば四角形ABCDの内接円が存在する”が示せません。 証明分かる方お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 図形の計量 円に内接する四角形ABCDで、AB=8,BC=3,AD=5,∠BAD=60°の時 (1)ACの長さ (2)円の半径 (3)四角形ABCDの面積 を求めなさい。 という問題で、 BD=7,CD=5,∠BCD=120°というのは分かったんですけど、 上の3問はどうすれば良いのか全く分からないんで おしえてください! 数1の三角比、円Oに内接する四角形の問題 数1の三角比、円Oに内接する四角形の問題 お世話になってます。またわからないので教えてください。 数1の三角比、円Oに内接する四角形ABCDにおいて、AB=3、BC=CD=√3とする。 また、cos∠ADC=-√3/6である。 ACの長さを求めよ。 これは、AC=Xとして、 x^2=(3^2+√3^2)-(2*3*√3*cos-√3/6)で計算するのでしょうか? でもこれだとcos-√3/6だと何度かわかりません。 平面図形と三角比 について大至急!解答お願いします! 平面図形と三角比 について大至急!解答お願いします! 途中までは解けたのですが・・・ 解答と答えが合いません。 AD//BCである台形ABCDが円Oに内接していて、AB=3, BC=8, ∠ABC=60°とする。 このとき、AC=(ア) CD=(イ) DA=(ウ)である。 よろしくお願いします! 四角形ABCDが半径53/8の円に内接 四角形ABCDが半径67/8の円に内接この四角形の週の長さが44で辺BCと辺CDの長さがいずれも13であるとき、のこり二辺ABとDAの長さを求めよ。 この問題を教えてください。 数学の問題です。 ⊿ABCについて、b=3、c=3、A=30°のとき、 ⊿ABCの面積S 円に内接する四角形ABCDにおいて、 AB=2、BC=4、CD=3、DA=3とするとき、AC の問題の解法と解答をお願いします。 円に内接する四角形の問題です 円に内接する四角形ABCDにおいて、AB=2、CD=3、∠ABC=60°のときBCとDAの長さを求めよ。 この問題はこれだけの条件で答えがでるのでしょうか? また、 円に内接する四角形ABCDにおいて、AB=2、BC=3、∠ABC=60°のときCDとDAの長さを求めよ。 この場合はどうでしょうか? もし解ける方がいましたら教えてください。 内接四角形の面積 「円に内接する四角形ABCDにおいてAB=8、BC=5、∠B=60°とする。この四角形の面積が最大となるとき、ADおよび面積をもとめよ」という問題がわかりません。 解き方の方向性だけでも教えてもらえるとありがたいです。 おうぎ形の内接円て・・・ 平面上に3点A,B,CがありAB=BC=CA=1である。点Bを中心に半径1の弧ACをかく、このとき線分BC,弧CA、線分ABに内接する円の半径を求めよという問題でおうぎ形の内接円の半径の求め方ってありますか? またさらに点Cを中心に半径1の弧ABをかく。 このとき線分BC、弧CA、弧ABに内接する円の半径を求める問題、そして点Aを中心に半径1の弧BCをかいてこのとき弧BC,弧CA,弧ABに接する内接円の半径はどうやって求めればいいでしょうか?できれば詳しく教えていただけるとありがたいです 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
式を書いていただけるとありがたいです