(1)
y=xのグラフとy=-log(x)のグラフを描いて、グラフ上で2つのグラフのy座標を足し合わせたグラフを描けばよい。自分で描いて下さい。
(2)
V=π∫[1,2] y^2 dx
=π∫[1,2] (x-logx)^2 dx
=π∫[1,2] (x^2-2xlogx+(logx)^2) dx
=π{∫[1,2] x^2 -∫[1,2] 2xlogx dx +∫[1,2] (logx)^2dx}
ここで、部分積分を使えば
I2=∫2xlogx dx=(x^2)logx -∫xdx = (x^2)logx -(1/2)x^2 +c1
I3=∫(logx)^2dx=x(logx)^2 -∫2logxdx
=x(logx)^2 -2xlogx+∫2dx =x(logx)^2 -2xlogx +2x +c2
なので
V=π(1/3)[(x^3)] [1,2] -π[(x^2)logx -(1/2)x^2] [1,2]
+π[x(logx)^2 -2xlogx +2x] [1,2]
=(35/6)π+2π{log(2)}^2-8πlog(2)
(≒3.92404)