ベストアンサー 無限級数についての疑問です 2011/03/04 11:05 一般に振動する数列の和は発散するのでしょうか? 例えばsinnπは振動しますが和はnが奇数が偶数によって0か1になると思うのですが… みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Tacosan ベストアンサー率23% (3656/15482) 2011/03/04 11:14 回答No.1 「収束しない」という意味では「発散する」といえる. 質問者 お礼 2011/03/04 12:17 なるほど! 言葉の意味をもう少し理解しておくべきでした。 ありがとうございました 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数III 無限級数の収束・発散を調べたい 与えられた無限級数の 奇数項の部分和 と 偶数項の部分和 が異なる値に収束する よってこの無限級数は振動し、発散する という解法と、 与えられた無限級数の 数列が0に収束しない よってこの無限級数は発散する という解法はわかるのですが、 与えられた無限級数の 奇数項(偶数項)の数列の極限が0に収束しない よってこの無限級数は発散する という解法が、いまいちピンときません。 どこがわからないのか?といわれても はっきり答えることができないのですが… 3つ目の解法では具体的に どんなことが起きているのか 教えてください。 漠然とした質問ですみません。 無限級数と無限数列の違いについて 無限級数の和を求めよ、といった場合0に収束しない場合、「数列{An}が0に収束しないから、この無限等比級数は発散する」となりますよね。それは級数ってのは数列の初項からn項(n→∞)まで足した場合、第∞項にいっても0にならなければ永久に数が増えるために発散ということでしょうか。 数列というのは最後の項(∞)の数値はなにか?ということでしょうか。それで第∞項(←こういう言い方は正しいか分かりませんが・・・)がなんかの値に限りなく近づいていったらその値に収束。ということでしょうか。 つまり、例えば数列のn項(n→∞)が1に収束しても、級数は数列が収束したからって、1を永久に足し続けるから発散。ということでしょうか? ほかにも、数列が、増幅でも減衰でもない一定の振動をしている場合は、1-1+1-1+1・・・となって、合計が1,0,1,0,1,0・・・と0と1を振動してるだけなので級数も振動となるのでしょうか。 似たような問題で、+と-の値で増幅振動するのがあったんですけど,それは数列が0に収束しないから発散となっていました。1-2+4-8+16-32・・・ となり級数も振動すると思うのですが、解答に発散となっていたので、何かの値に収束しないものは(振動なども)すべてまとめて発散というのでしょうか? ずらずら質問というか確認のような感じで書いてしまいましたが・・・ 極限をやるうえで、意外と大事なところだと思うのでお願いします。 無限級数の和 一度削除されてしまいましたが、修正したので、もう一度させていただきます。次の二つの無限級数の和を求めよ、という問題がわかりません。ご協力お願いし ます! (1)Σ[(n+k)!/{(n+k)-k}!・k!]・z^k (k=0~∞) (2)Σ[{(-1)^(k-1)}/k] (k=1~∞) (1)は第n項まで順に書き出して、何か掛けて元のと上手く引けばいいのかと思ったのですが、まず何を掛ければいいのかよくわかりません。第n項までの数列の和を求めて無限大まで飛ばすという考え自体が間違っているのかもしれませんが・・・ (2)これは発散するような気がするんですが、発散するという確証がつかめません・・・ 解法のヒントでもいいので教えてください。お願いします。 無限級数の和 数列a_nについて A=a_1 + a_2 + a_3 + …… + a_n のことをa_nの級数といい、 n→∞のときAが収束するならば その極限値を無限級数の和というらしいですが、 級数自体が数列の和なのに、 なんで和の和なんて言い方をするんでしょうか? 無限和の収束発散 大学でレポートが出たんですが、なにぶん全くの専門外でして・・・ 解答法があってるかどうかも確認していただいてよろしいですか? 無限和1ー1+1-1+1-1+1-・・・の収束発散を調べろ なんですが、私は 奇数項までの和は1、偶数項までの和は0 なので、無限和は収束せずに発散する と考えたのですが、あってますか?? 偶数項、奇数項の級数について お教え下さい。 (1)単調減少列にて、全ての項はゼロより大きい。 (2)数列の極限値はゼロ。 (3)級数は無限大に発散。 この様な条件にて、奇数項だけを無限に足し合わせたもの、偶数項だけを無限に足し合わせたものは、 無限大に発散するとあるのですが、何故なのでしょうか? 感覚的に全ての項がゼロより大きく、また無限個の項を足し合わせたものが無限大に発散するのだから、奇数項だけ足し合わせても、また偶数項だけを足し合わせても無限大に発散するのだろうとは思えるのですが、どの様に証明したら良いか?分かりません。 無限級数の和について(数研のやりかたで) 問 無限級数 1-1/3+1/2-1/3^2+1/2^2-1/3^3+・・・・の和を求めよ。という問題なのです。まず部分和S(n)を求めるのはわかるのですが、なぜS(2n)とS(2n-1)とに分けなければいけないのですか?また、S(2n)とS(2n-1)はそれぞれなにを示しているのでしょうか?見た感じS(2n)は二つの数列を表している、つまりS(2n)の極限が3/2になります。 無限級数について。 次の無限級数の収束、発散を調べ、収束する場合はその和を求めよ。 (1)Σ((下)n=1.(上)∞){2*3^n+3*(-2)^n}/6^n (2)Σ((下)n=1.(上)∞){1^2+2~2+3~2+…+n^2}/n~3 解けなくて困っています>< 解答おねがいします。 無限級数及び、無限級数の定義とは? 度々スイマセン。 宜しくお願いいたします。 無限級数の定義について考えております。 以下のような解釈で正しいでしょうか? 無限級数とは 数列{a_n} (つまり、a_1,a_2,a_3,…)からできる 数列{Σ(a_k,k=1,n)} (つまり、Σ(a_k,k=1,1),Σ(a_k,k=1,2),Σ(a_k,k=1,3)),…) のことである。 これを単に Σ(a_k,k=1,∞) と表す。 無限級数の値とは数列{Σ(a_k,k=1,n)}の極限値 lim(n→∞,Σ(a_k,k=1,n)) の事であり、 Σ(a_k,k=1,∞) と表す。 この値の事を無限級数の和とも言う。 数列の和。偶数奇数に分かれる場合 よろしくお願いいたいます。 数列の数列の和。偶数奇数に分かれる問題で a2m=4m^2+m a2m-1=4m^2-3m+1 となりました。このn項数までの和を求める問題なのですが、、 項数の設定が良くわかりません。 偶数、奇数とも項数をNでおき、和の公式に当てはめる流れになるのですが 最終的にn項に戻すときに 偶数はn=2Nだから N=1/2nを代入。 奇数はn=2N-1だから N=n+1/2を代入。 まず、項数をn=2N、n=2N-1と置くところがわかりません。 偶数奇数なのだから半分ずつ、1/2nずつではないのですか? また項数をn=2N、n=2N-1と置いたとしいても足す数は最終的にnなのだから 1/2n+n+1/2とnで換算したときに合計がnにならないとおかしいと 感じます。 私は何が理解できていないのでしょうか? 丁寧なご説明をいただけたら幸いです 無限級数 無限級数Σ(n=1 ∞)2/(√n+2+√n)の収束、発散を調べよ。 自分で考えてみたのですが、自信がないので添削をお願いします。 第k項をak、初項から第n項までの部分和をSnとする。 ak=2/(√k+2+√k) =2(√k+2-√k)/(√k+2+√k)(√k+2-√k) =√k+2-√k ゆえにn→∞のとき Sn=(√3-√1)+(√4-√2)+・・・+(√n+2-√n) =-1-√2+√n+2→∞ よって、発散する。 これでいいでしょうか? 無限級数のS2nとS2n-1に分けてやる問題で… 画像の問題なんですけど 黒枠の無限級数の和を求めろという問題で 部分和Snとして、偶数と奇数で場合わけしなければいけないのは分かるのですが、黄色の部分はS2nになっているのに、2n-1乗と2n乗にしなくてもいのでしょうか? 下の黄色では3の2n乗にしなくてもいい理由が分かりません。 画像ではSnの途中の計算を省略してあります。 またlim2n=3/2で求める和は3/2という答えです。 よろしくお願いします。 無限級数の和 ∞ Σ{(-1/3)^n}SINnπ/2 n=1 わかる方いたらよろしくお願いします。 無限等比級数の和の求め方 ∞ ∑(n+1)/(n+2) n=1 の級数の発散・収束をしらべ、収束する時は和を求めよ。 という問題なのですが、1になるのに発散する意味が分かりません。 わかりやすく教えて頂ければ有難いです。 規則性の異なる奇数項と偶数項を持つ数列の一般項は? 10/1,5/1,10/3,5/2,10/5,5/3,10/7,5/4,10/9,5/5,10/11,5/6・・・・ 奇数項は、10/1,10/3,10/5,10/7,10/9,10/11・・・ 10/(2n-1) 偶数項は、5/1,5/2,5/3,5/4,5/5,5/6・・・ 5/n 元の数列の一般項はどのように求めればよいのでしょうか? 中2レベルの文字式の利用(説明問題です) 偶数と奇数の和は奇数となる。 この理由を説明する問題です m,nを整数とする。mを使って偶数を表すと2m、nを使って奇数を表すと2n+1となる。よって、偶数と奇数の和は2m+(2n+1)=2(m+n)+1。m+nは整数だから2(m+n)+1は奇数である。したがって、偶数と奇数の和は奇数となる。 これが解答書の回答です 私は、奇数を表す式を2n-1として、偶数と奇数の和は2m+(2n-1)=2(m+n)-1としました この説明でも正解だと思うのですが間違いないでしょうか? このような問題の場合、解答書のほとんどは奇数を2m+1や2n+1と表していますが、例えば 奇数と奇数の和は奇数である。を説明する場合も私は2m-1と2n-1と表して説明します。 明日、数学の期末テストです。 心配になったので質問させてもらいました。 どうか、アドバイスをお願いします。 級数の収束・発散について 次の問題について教えていただきたいです。 正の実数列{a_n}について Σa_n=∞ 成り立つとき (1) 級数 Σa_n/(a_1+a_2+…+a_n) の収束・発散を判定せよ。 (2) 級数 Σa_n/(a_1+a_2+…+a_n)^2 の収束・発散を判定せよ。 以上です。級数は3つともすべてn=1~∞の和です。 (1),(2)ともに分数の分母は和,和の二乗です。 (1)は発散・(2)は収束と結果は予想が容易につくのですが証明がさっぱりです。 よろしくお願いします。 等比数列の級数 1、11、111、1111、・・・という数列の一般項と初項から第n項までの和Snを求める問題で、一般項は初項1、公比10の等比数列の和となっていることから、一般項が1/9(10^n-1)であることがわかりますが、 n Sn=Σ1/9(10^k-1) k=1 式の展開で1/9{10(1-10^n)/(1-10)-n}と展開されているのですが、 分子の最初の10は公式から考えれば、初項の1ではないのでしょうか? どうして10となるのかわかりません。 どなたかお分かりになりますか? 数列;無限等比級数の和の応用(?)問題 お世話になっております。 当方大学生ですが、高校生レベルの問題です。 ただし、答えがあるとは限りません。 等差数列と等比数列の積でできた数列の和を求める問題はよくありますよね(下式)。 S_n=Σ_[k=1~n] { k * (1/2)^k } これは等比数列の和の公式を導くときのように公比をかけたものrS_nを考えれば、ただの等比数列の和に帰着します。 ここからがしつもんですが、では、 調和数列と等比数列の積でできた数列の和は求めることができるでしょうか(下式)? S_n=Σ_[k=1~n] { (1/k) * (1/2)^k } またその無限級数はどうでしょう?上のS_nは収束しそうですが、 その値は求まるでしょうか?あるいは√やe, piで表せない無理数となってしまうのでしょうか? 詳しい方、自信のある方、どうか、よろしくお願いいたします。 偶数と奇数の和は奇数になることを説明しなさい 中2の数学の問題です。 問題: 偶数と奇数の和は奇数になることを説明しなさい。 問題集の解答で疑問に思う点がありましたので質問させていただきます。 解答: m,nを自然数とすると偶数は2m、奇数は2n-1と表せる。 2数の和は、 2m+2n-1=2(m+n)-1 m+nは自然数だから2(m+n)は偶数になり、2(m+n)-1は奇数になる。 よって偶数と奇数の和は奇数である。 (証明終わり) 上記証明でわからない点が2点あります。 (1)m,nをなぜ自然数に限定しているのか。 m,nは一般に整数ではないのでしょうか?中学レベルではマイナスの数も 偶数、奇数が定義できると思うので、私はこのm,nは整数と置くのが正しい 答え方だと思うのですが、いかがでしょうか? (2)もしm,nが自然数と置くのが正しいとしたとき、奇数を2n+3とおいてしまうと 3(n=1)から始まる奇数になり一般に自然数全体で証明したことにならないの ではないかという疑問があります。 2m+2n+3=2(m+n+1)+1 このような解答も見かけます。 文字式の計算上は奇数といえますが、nが自然数で奇数を2n+3とおいても 問題ないのでしょうか? ご回答よろしくお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
なるほど! 言葉の意味をもう少し理解しておくべきでした。 ありがとうございました