締切済み 証明 2011/01/10 21:47 E(X^2-2Y^2)=E(X^2)-2E(Y^2)を証明するにはどうすれば良いでしょうか? 何方かお力貸していただけると有り難いです。 みんなの回答 (1) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2011/01/10 21:59 回答No.1 敢えて、「まず、X, Y, E( ) が何なのか書かなくっちゃね。」と言ってみる。 そういうことのできない人は、なかなかモノが解るようにならないから。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ポアソン乱数の証明 一様乱数を用いてポアソン乱数を求める証明を教えて下さい。 0≦x<1の一様乱数の系列を{x0,x1,...}とする。このとき y0=e^λ・x0, y1=e^λ・x0x1, y2=e^λ・x0x1x2,... によってできる数列{y0,y1,...}においてはじめてyn≦1となるnを求めるとこのnがポアソン乱数になることを証明せよ。 一様連続の証明について 疑問点を整理しての再質問です。 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法です。 ここでは部分列の極限値(x、y)においてのみ |f(x)-f(y)|=0となり、|f(x)-f(y)|≧ε>0に矛盾する、として 証明を完了しているのですが、 それでは(※)を満たすx'、y'が“一つも存在しない”ことにはならないので証明としておかしいような気がするのですが、 どうでしょうか? よろしくお願いします。 一様連続の証明について 度々すみません。 またお世話になります。よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法ですが、 見て分かる通り、この証明は部分列や「ボルツァーノ・ワイヤストラスの定理」を用いたりしてとても複雑です。 ですが私には部分列などを使う必要性が理解できません。 私の考えた証明はこうです。 『あるε>0に対して、δ>0を0に近付けていくと |xーy|<δにおいて|x-y|も0に近づく。 この時閉区間〔a,b〕にある点cにx、yが共に近づく と考えてよい。(δ→0でx、y→c) そしてこの時 |f(x)ーf(y)|→|f(c)ーf(c)|=0 (δ→0) これは|f(x)ーf(y)|≧ε>0 に反するので題意の定理は証明された。』 ずいぶん簡単ですが、 おそらくどこかに誤りがあるのだと思います。 どこに誤りがあるか分かる方、いらっしゃいましたら ご指摘よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 分散の証明中 var(X+Y)=var(X)+var(Y)の証明の解答を見ていたときにXYが独立である時共分散は以下のようになると書かれていました・・・ E[XY-XE(Y)-YE(X)+E(X)E(Y)]=E(XY)-E(X)E(Y)=0 しかしなぜ左の式から真ん中の式に変換できたのか分かりません。どなたか教えてください。。 一様連続の証明について お世話になります。よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてなのですが、 以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= この証明は私の使っている参考書「微分積分学 難波誠 裳華房」 と同じやり方の証明なのですが、全く意味が分からずに困っています。 上の証明を自分なりに解釈すると、 『定理が成り立たないとすると あるε>0が存在して、どのようなδ>0に対しても|x-y|<δ かつ|f(x)-f(y)|≧ε を満たすx、y∈〔a,b〕となるx、yが存在する。 この時c∈〔a,b〕とすると lim(x,y→c)|f(x)-f(y)|=0なので これは|f(x)-f(y)|≧ε>0に矛盾するので、定理が証明された。』 としているように見えるのですが・・・。 これでは違うのでしょうか? 質問が分かりづらいかと思うのですが、よろしくお願いします。 数式の証明についての質問です。 以下のそれぞれの数式を証明しなければならないのですが、 どのように解けばよろしいのでしょうか。 教えていただきたいです。宜しくお願いします。 ・E(X+c)=E(X)+c ・E(cX)=cE(X) ・E(X+Y)=E(X)+E(Y) ただし、cは定数、 n ΣXi / n = E(X) とする。 i=1 期待値の公式の証明 E(x+y)=E(x)+E(y)を証明せよ、という問題が分かりません。 同時確率密度関数f(xy) xの周辺確率密度関数fx(x) yの周辺確率密度関数fy(y)を使えと言われましたが、どう使えば良いのか・・・ 分かる方はご意見をお願いいたします。 証明問題 「ベクトル場と曲線の直交」 証明問題で、 『xy平面上の関数φ(x,y)に対して次式で定義されるベクトル場E(x,y) E(x,y) = -∇φ(x,y) = -{(∂φ/∂x)ex+(∂φ/∂x)ey} (ex, ey はそれぞれxとyの単位ベクトル) は、φ(x,y) = 一定である曲線の接点と各点で直交することを示せ。』 という問題なのですが、どのように証明すればよいのか分からずに困っています。 どなたか分かる方がいらっしゃればアドバイスなどお願いいたします。 一様連続の証明について(改) 同じ問題の質問を何度もすみません。 お蔭様でだんだん分かってきましたので、あともう少しだと思うので、 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法です。 ここまでは過去の質問と同じなのですが、 今回の本題はここからです。 さてこの定理は、区間が開区間では成り立たないので、条件として閉区間であることが必要ですが、 証明のどこで閉区間でないと成り立たない部分があるのかが分からないのです。 この証明では閉区間〔a,b〕を開区間(a,b)と置き換えてもそのまま成り立つような気がするのです。 この証明内で使われている「ボルツァーノ・ワイヤストラスの定理」は「有界な数列は収束する部分列を持つ」という定理ですが、 有界列というのはxn∈(a,b)のように開区間の範囲内でもよかったと思うので、これも証明内で閉区間〔a,b〕を開区間(a,b)に置き換えてもそのまま成り立つと思います。 この証明ではいったいどこで開区間では成立しない閉区間限定という条件を使っているのでしょうか? またどこかで勘違いをしていると思うのですが、 分からずに困っています。 よろしくお願いいたします。 証明 1) z=g{f(x)}, y=f(x) ⇒ dz/dx=dz/dy*dy/dx すなわち、dg{f(x)}/dx=g'(x)*f'(x) 2) (log|x|)'=1/x logは底がeの自然対数 という公式を習い、証明しようとしましたが何から始めたらよいか分からなくてこまってます。 面白そうなので理解したいです もしよろしければ証明していただけないでしょうか。 e^xのn回微分の証明 e^xのn回微分がe^xになることを証明したいのですが どのようにすればいいのか分かりません。 (e^x)'=e^x となるのは分かるのですが… (e^x)'=e^xを証明すれば良いのでしょうか? その時、(e^x)'=e^xを証明するときは 対数微分法を用いてy=a^xの微分がa^x(loga) になることを証明して、aにeを代入する方法で良いのでしょうか? 分かる方、よろしくお願いします。 期待値の加法性の証明法 確率変数Zの確率密度関数をpとするとき,Zの期待値は E[Z] = ∫{z p(z)}dz (ただし積分範囲はZの定義される空間全体) で定義されますが,期待値の加法性: E[X + Y] = E[X] + E[Y] はどのように証明できるのでしょうか? 証明もしくは証明が載っている文献を教えて頂ければ幸いです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 証明問題です。 (1)x≧y≧0のとき、不等式x/1+x≧y/1+yが成り立つことの証明 (2)不等式|x|/(1+|x|)+|y|/(1+|y|)+|z|/(1+|z|)≧|x+y+z|/(1+|x+y+z|)が成り立つことの証明 どこから手をつけたらいいのか さっぱりです…… 解ける方いらっしゃいましたら、 解説お願いします。m(_)m 証明の問題 「x+y+z=3,(x-1)^3+(y-1)^3+(z-1)^3=0のとき、x,y,zのうち少なくとも1つは1であることを証明せよ。」 という問題なんですが、(x-1)(y-1)(z-1)=0を証明すればいいのは分かります。 しかし、式を展開しても行き詰まってしまいます。 多分(x-1),(y-1),(z-1)を置き換えるのだと思うのですがよく分からなくなってしまいました。 分かる方、回答お願いします。 全微分可能性の証明 f:R^2→R (x,y),(a,b)∈R^2 とする。 g(x,y)=f(x,y)-f(a,b)-α(x-a)-β(y-b) lim g(x,y)/|(x,y)-(a,b)|=0 (x,y)→(a,b) 上を満たすようなgの存在を仮定したとき、それが一意であることを証明せよ。 ---------------- というのが全微分の定義と一緒に教科書に載っていたのですが証明の仕方がわかりません。一意性を示す証明なので、上の式を満たすようなg(x,y)とg'(x,y)が存在すると仮定し、そこから矛盾を導く(つまり、g(x,y)=g'(x,y)である)流れでよいのかと思ったのですが、やはりどうすればよいのかがわかりません。 証明の流れ、もしくは証明を教えてください。よろしくお願いします。 対称式の証明が出来ずに困っています。 数学の問題が解けずに困っています!どなたか、お力をお貸しください。 問題は、以下のような問題です。 四つの正の数 x,y,z,w が与えられています。 それらは、x+y+z+w=1 を満たしています。このとき {x^2/(x+y)}+{y^2/(y+z)}+{z^2/(z+w)}+{w^2/(w+x)} >= 1/2 を、示しなさい。 私は、以下のようにアプローチしました。ご参照ください。 まず、x >= y >= z >= w ・・・(1) と仮定する。 x+y+z+w=1 を 2 でわって (x/2)+(y/2)+(z/2)+(w/2) = 1/2 とする。 次に、左辺の各項のそれぞれの文字を分子、分母に掛ける (x^2/2x)+(y^2/2y)+(z^2/2z)+(w^2/2w) = 1/2 ・・・(2) ここで、(1)から 2x >= x+y ・・・(3) 逆数を取って (1/2x) <= 1/(x+y) 両辺に x^2 を掛けて x^2/2x <= x^2/(x+y) これを、(2)の各項で繰り返して 1/2 = (x^2/2x)+(y^2/2y)+(z^2/2z)+(w^2/2w) >= {x^2/(x+y)}+{y^2/(y+z)}+{z^2/(z+w)}+{w^2/(w+x)} としたかったのですが… wについて、(3)をしようと思っても 2w >= w+x が成り立たず、証明が不十分になってしまいます。 この証明方法でうまくいく方法は、無いでしょうか?最後の詰めだけうまくいけば、スマートな方法だと思うのですが…。 それとも、他に良い手がある場合には、ご教授願えればと思います。 皆様のお知恵をお貸しください。よろしくお願いいたします。 連続の証明についての質問 f(x)=x^3がRで連続であることの証明は ∀y∈Rに対して、∀ε>0,∃δ>0,|x-y|<δ⇒|x^3 - y^3|<εをいえばよい ので、証明は (証明) δ = min{ε/(2|y|+1)^2,1} とおき、|x-y|<δとすれば、 |x^3-y^3|=|(x-y)|*|(x^2+xy+y^2)|≦|(x-y)|*(|x^2|+|xy|+|y^2|) <δ*(|x|+|y|)^2<δ*(|y+δ|+|y|)^2≦δ*(|2y|+δ)^2 ≦δ*(|2y|+1)^2 (δ≦1より) ≦ε (δ≦ε/(2|y|+1)^2より)■ でおそらくできていると思うのですが、f^-1:fの逆関数がRで連続である ことの証明がうまくいきません。 y=f(x)とおくと、f(x)=x^3から、f^-1(y)=x=y^1/3 (yの3分の1乗)となり、 ∀z∈Rに対して |f^-1(y)-f^-1(z)|=|y^1/3-z^1/3| …(*) (*)から先の変形がうまくいきません。どなたか、わかる方、 お教えください。 式と証明 x^2-2xy+2y^2+2x-6y+5≧0 を証明せよ、という問題で、 (x-y+1)^2+(x-2)^2≧0 よりとただ書いてあっただけだったんですけど、 どうやって、導けばよいのでしょうか? 証明なのですが・・・ Xが0よりも大きく、Yが0よりも大きく、X+Yがπ/2よりも小さいという条件で、1-tanXtanYが正であることを証明したいのですが、これは、微分でやるべきでしょうか?それとも、ある数値を代入して出せばよいのでしょうか? 等式の証明 0でない実数a、b、x、yが、ax=yかつby=xを満たしている時、次の等式が成り立つことを示せ。 {x/(a+1)}+{y/(b+1)}=x^2+y^2/x+y という問題です。(a+1)x=(b+1)yが成立するというのを証明してみた所で、止まってしまいました。 この後、どのように証明したら良いのか、教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など