ベストアンサー ∫xe^xsin(x)dx 2010/11/02 15:03 ∫xe^xsin(x)dx これの不定積分がわかりません。わかりやすく教えていただけないでしょうか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2010/11/02 15:39 回答No.1 I=∫ x(e^x)sin(x) dx = 1/2 e^x (x sin(x)-x cos(x)+cos(x))+C 次の無料サイトで詳しく計算過程を付けて積分してくれます。 http://www.wolframalpha.com/ で「integrate(x*exp(x)*sin(x),x)」と入力し[=]をクリックで 積分結果を求めてくれます。さらに 右肩上の「Show steps」をクリックすれば詳しい積分計算過程を表示してくれます。 質問者 補足 2010/11/02 17:18 ∫xe^xsin(x)dx=x∫xe^xsin(x)dx-∫1(∫xe^xsin(x)dx)dxの式変形がわからないのですが。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ∫xe^xsin(x)dx=x(∫xe^xsin(x)dx)-∫1(∫ ∫xe^xsin(x)dx=x(∫xe^xsin(x)dx)-∫1(∫xe^xsin(x)dx)dx この式変形がわからないのですが。ご教授ください。 ∫xe^x^2 dxの解き方について 数学得意な方に質問です。(置換積分) ∫xe^x^2 dx についてですが、 (1)eの肩にあるx^2をzとして置き換えたらdxは何になりますか?の問題で途中式はなく、いきなりdx/dz=2xとなり、さらにdx=2x/dzとなっています。 (2)さらに∫xe^x^2 dxにzとdxを代入するといきなり∫xe^z 2x/dzとなり、さらに2/1∫e^zdzとなるらしいのですが、途中式はなく、なぜそうなるかわかりません。 詳しいかた、教えて頂ければ幸いです。 ∫<1/2→0>xe^2x dx ∫<1/2→0>xe^2x dx 答え:1/4 途中式を教えてください 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ∫xe^-x^2dx ∫xe^-x^2dx が0から1の時 答えが1/2(1-1/e)になるのですが それまでの計算がわかりません 教えてください 定積分、不定積分 解析。以下の問題教えてください 次の定積分、不定積分を求めよ。(2)は上端にπ/6下端に0です (1)∫xe^(2x) dx (2)∫π/6 xsin3x dx 0 (3)∫x^3log dx (4)∫x^2e^(2x) dx 不定積分∫f(x)dxのdx 不定積分∫f(x)dxのdxとはなんですか? 積分 ∫√(4-x^2)dxについて 不定積分の問題なのですが、 ∫√(4-x^2)dxの答えがどうしても導けません。 助言をお願いします。 ∫(x/3+8)^3dxの不定積分を求めたいんですが、解き方がわかりま ∫(x/3+8)^3dxの不定積分を求めたいんですが、解き方がわかりません。教えて下さい。因みに答えは3/4((x/3)+8)^4です ∫dx/(x×2^x) ∫dx/(x×2^x) (I)不定積分∫dx/(x×2^x)について。これは (1)高校数学でも解ける (2)高校数学では解けないが解くことは可能 (3)解くことはできない (4)わからない(ことが知られてる) のどれですか? (1)の場合ヒントを、(2)の場合答えを教えてください (3)(4)の場合 (II)極限 n lim∫dx/(x×2^x) 1 n→∞ は (1)はさみうちなどで具体的な値(もしくは発散)がでる (2)はさみうちなどでだいたいの値がでる (3)解くことはできない どれですか? よろしくお願いします 不定積分∫(x^2+1)^(-4)dxの解き方 不定積分∫(x^2+1)^(-4)dxの解き方がわかりません。 教えてください! 計算過程も書いていただけると嬉しいです・・・。 (1)∫sin^2dxの不定積分を求めよ (1)∫sin^2dxの不定積分を求めよ (2)x=sintと置換して∫√1-x^2dxの不定積分を求めよ (3)4x(1-x)=1-(2x-1)^2を利用して、 ∫dx/√x(1-x)=∫2dx/√4x-4x^2の不定積分をを求めよ 不定積分∮(x+5)/(x^2+5)dxの途中式を 不定積分∮(x+5)/(x^2+5)dxの途中式を教えて下さい。よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム dxについて。 不定積分で、でてくる∫f(x)dx=F(x)+Cとすると 左辺のdxはなぜかけられてるのでしょうか? dxは微小なxの微小変動量と書いてありましたが、 かけなければいけないのでしょうか?? 初歩的な質問ですみません。 微分方程式yy´=xe^(x^2+y^2) 微分方程式初心者です。 解けているとは思うのですが、教科書に解答がないため自信が持てません…orz 問題がないか確認をお願い致します。 yy´=xe^(x^2+y^2) yy´=xe^(x^2)e^(y^2) yy´e^(-y^2)=xe^(x^2) ye^(-y^2) dy/dx = xe^(x^2) ye^(-y^2) dy = xe^(x^2) dx ∫ye^(-y^2) dy = ∫xe^(x^2) dx これを解きまして、 -(1/2)e^(-y^2)+C1 = (1/2)e^(x^2)+C2 (Cは積分定数) で、正解でしょうか? 積分 dx について 積分のdxについて ・不定積分・・・・・微分の逆操作 ・定積分・・・・・・総和Σの極限 であると理解しています。 関数F(x)をf(x)の原始関数とすると、F(x)の微分は、 d/dxF(x)=f(x)です。 不定積分の場合は、微分の逆操作なので、 d/dxF(x)=f(x)の両辺を積分すれば、∫d/dxF(x)=∫f(x)となります。 よって、不定積分は∫f(x)=F(x)+Cではダメなのでしょうか? わざわざf(x)dxとして積分する理由がわかりません・・・ 微分の逆操作という意味であれば、∫f(x)=F(x)+Cはとてもしっくりくるのですが・・・ もちろん、式変形を行いd/dxF(x)=f(x)より、dF(x)=f(x)dxとなり、 両辺を積分すれば、∫f(x)dxが導けることは理解できます。 ∫f(x)dxは、F(x)の接線の傾きであるf(x)とdxでの面積の総和となり、 ∫f(x)dxが直感的に微分の逆操作というイメージが沸きません・・・ F(x)の接線の傾きであるf(x)とdxでの面積の総和が原始関数となる事を 教えて頂けませんでしょうか? (もちろん、積分定数分は切片としてズレる事は理解しています。) そもそも∫○dxは、一対で考えなければならないのでしょうか? このdxが何で積分するかを表すという考えなのでしょうか? ということは、 ・不定積分・・・・・微分の逆操作→∫f(x)dxのdxは何で積分するかを表すための記号 ・定積分・・・・・・総和Σの極限→∫f(x)dxのdxは幅 という解釈で良いのでしょうか? 定積分であれば、面積=Σ(高さ×幅)となるので、∫f(x)dxは理解できます。f(x)が高さでdxが幅。 ※質問内容※ ・不定積分は、∫f(x)=F(x)+Cではダメか。 ダメな場合、なぜダメなのか。 ・∫○dxは一対で考えなければならないのか? ・F(x)の接線の傾きであるf(x)とdxでの面積の総和がなぜ原始関数になるのか? ・不定積分における∫f(x)dxのdxとは”何で積分するか”を表す記号と解釈してよいか? 以上、長々とあほな質問ですがご回答よろしくお願い致しますm(__)m ちなみに、以前私と同様の質問の方がいらっしゃいました。 http://okwave.jp/qa1415099.html 積分の問題教えてください 積分の問題教えてください 1,部分積分 (1)∫xe^(2x) dx (2)∫xsin2x dx (3)∫(logx)/(x^3) dx (4)∫log(1+x) dx 2,置換積分 (1)∫(dx)/(2x+1)^3 (2)∫x((x^2)+1)^5 dx (3)∫x(e^(-x)^(2)) dx (4)∫cos^(3)xsinx dx (5)∫e^(x)cosx dx の9問です。 どうかお願いします。 ∫1/(x^4+1)dxについて 1/(x^4+1)の不定積分はどうなりますか? お願いします。 1/(xe^(x))の広義積分方法 1/(xe^(x))の広義積分方法 1/(xe^(x))のxについて0から∞までの広義積分方法 を教えてください。よろしくお願い致します。 ∫(1/(4-3x))dxの積分 ∫(1/(4-3x))dxの積分ができません。 ∫(4-3x)^(-1)dxに表してみても積分できないです。 どなたか、解法を教えて下さい。 ∫{x/(x+1)}dxの解き方 とても初歩的なのですが、積分についての質問です。 ∫{x/(x+1)}dxの解き方が分かりません。 以下のように解きました。 ∫{x/(x+1)}dx x+1=tとする x=t-1よりdx=dt よって ∫{x/(x+1)}dx=∫{(t-1)/t}dt =∫(1-1/t)dt =t-log(t)+C (C:積分定数) =(x+1)-log(x+1)+C こうなったのですが、どうやら計算違いのようで、解は「x-log(x+1)+C」となっていました。 解が出なかったわけではなく、最初の時点で「x/(x+1)」を「1-1/(x+1)」と変形したらちゃんと解は出たのですが、上記の解法の間違いが分からず、もやもやしています。 どこが間違っているのでしょうか。 置換積分が使えるのは特定の数式の場合のみなのでしょうか。 積分は不得意なので、見苦しい点あるかと思いますが、ご指摘お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
∫xe^xsin(x)dx=x∫xe^xsin(x)dx-∫1(∫xe^xsin(x)dx)dxの式変形がわからないのですが。