ベストアンサー 空間ベクトルの問題 2010/06/15 23:11 空間ベクトルの問題 ベクトルa=(1,x,2) ベクトルb=(-3,x,x) が垂直となるためのxの値を求めよという問題ですが、 やり方がわからず困っています…。 解説をよろしくお願いします。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー sanori ベストアンサー率48% (5664/11798) 2010/06/15 23:20 回答No.2 こんにちは。 垂直ということは、ベクトル同士の内積がゼロです。 (A、B、C)・(D、E、F) = AD + BE + CF なので、 a・b = 1×(-3) + x^2 + 2x = 0 x^2 + 2x - 3 = 0 というわけで、二次方程式の解を求める問題になりました。 x^2 + 2x - 3 = 0 (x+3)(x-1)=0 x=-3 または x=1 質問者 お礼 2010/06/23 18:08 返事が遅れて申し訳ございません。 まだ学校でもやってない範囲でして、内積ゼロに気づきませんでした…。 大変スッキリしています。 お二人とも、ご回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) entap ベストアンサー率45% (78/172) 2010/06/15 23:19 回答No.1 垂直ということは ベクトル間の角度が90°ということですね。 ベクトル同士の関係性の一つに、角度を使う「内積・外積」というものがありました。 ベクトルAとベクトルB内積A・Bは|A||B|cosθとかいうものでしたね。 情報がなくて困っているところに、角度が90°というおいしい情報が手に入っています。 この式を利用しましょう。 ベクトルの大きさをxに変数に入れて表し、上の式に代入してやると… 後は計算にお任せいたします。 質問者 お礼 2010/06/23 18:05 返事が送れて申し訳ございません。 丁寧に解説していただき、理解できました。 ご回答、ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 空間ベクトルの問題 空間ベクトルの問題 空間内に4点A(0,0,0) B(2,1,1) C(-2,2,-4) D(1,2,-4)がある。 (1)∠BAC=θとおくとき、cosθの値と△ABCの面積を求めよ。 (2)AB↑とAC↑の両方に垂直なベクトルを1つ求めよ。 (3)点Dから、3点A,B,Cを含む平面に垂直な直線を引き、その交点をEとするとき、線分DEの長さを求めよ。 (4)四面体ABCDの体積を求めよ。 この問題を教えてください。 また、(1)120° (2)(-1,1,1)であってますか? ベクトルの問題です。 2つの平面ベクトルa^→=(3、1)、b^→=(-3、4)を考える。 sを実数とする。sa^→-b^→とsa^→+2b^→が垂直になるとき、sの値を求めよ。 この問題の解説できれば式があると大いに助かります。 空間ベクトルについて 空間の2点をA(-3,1,-2)B(3,―1,1)とし、aベクトルの成分を(-1、-4,4)とする。aベクトルをABベクトルに平行なbベクトルと、ABベクトルに垂直なベクトルcの和に表すとき、bベクトル、cベクトルの成分を求めよ。 問題文から、aベクトル=bベクトル+cベクトル、bベクトル=kABベクトル,ABベクトル・cベクトル=0。aベクトル・ABベクトル=14を求め(bベクトル+cベクトル)・ABベクトル=14からkの値を求めています。(bベクトル+cベクトル)・ABベクトルはどこからでてきているのですか?発想の仕方が良く分かりません。教えてください。お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数B空間ベクトルの問題 数B空間ベクトルの問題です。 解説をお願いします。 空間に4点O,A,B,Cがあり、 三本の線分OA,AB,BCについて OA=AB=BC=1,OA⊥AB,AB⊥BCが与えられている。 この四面体で体積が最大となる 四面体を考える。 ↑OA・↑BC=□ だから体積は□/□ である。さらに、頂点Bから平面OACに垂直な直線を引き、その交点をHとすると、 │↑BH│=√□/□ であり、 ↑OH=↑OA+(□/□)*↑AB+ (□/□)*↑BC である。 □にあてはまる値を解説して下さい。よろしくお願いしますm(_ _)m すみません。 空間ベクトルの問題の質問なんですが、 すみません。 空間ベクトルの問題の質問なんですが、 pを実数とし、空間ベクトルa,b,cが「a・b=0ではない」、「b⊥c」を満たすとき、 a・x=p, b×x=cとなるベクトルxをp,a,b,cを用いて表す問題なんですが・・ 教えてください… ベクトル空間の問題です. ベクトル空間の問題です. ------------------------------------------------ 3つのベクトルa={4 1 0},b={1 1 3},c={1 -12 -13} が与えられており, 設問1 a,bが張る部分空間Wの直行補空間W⊥を求めよ. 設問2 c=x+y(x∈W, y∈W⊥)であるx,yを求めよ. ------------------------------------------------ という問題なのですが,設問2がよく分かりません. 解き方はわかったのですが,何故そうなるのかが知りたいです. どうかご指導よろしくお願いします. ちなみに設問1は, a,bのベクトル成分が各々直行するので, 任意のベクトルをx={x1 x2 x3}とすると, (4*1)x1+(1*1)x2+(0*3)x3=0 この方程式を解くと, 4*x1=-x2, x3は任意の大きさとなり, W⊥={x|k -4k k}, k:任意の定数. でよろしいでしょうか? ベクトルの問題(2) わかるかた解答ください!!※解答以外の回答いりません 以下 →aなどの矢印省略いたします。 次の2つのベクトルの内積を求めなさい。 (1) a=(-5,3,-2),b=(2,3,-1) (2) a=(4,-4,7),b=(6,-2,-3) ベクトルa=(2,-3,-1),b=(3,-5,1),c(2,xによる,-2)について次の問いに答えなさい。 (3) 内積a・bの値を求めなさい。またa,bのなす角を0とするとき、cos0を求めなさい。 (4) a,cが垂直になるようにxを求めなさい。 問題変わって (5) a=(2,x,-3),|a|=7となるような,xの値を求めなさい。 (6) a=(-2,4,1),b=(x+1,-x-3,-x)が垂直になるように、xの値を求めなさい。 空間ベクトル 空間内の4点A(1,3,-1),B(0,2,1),(1,1,0),(-1,7,z)が同一平面上に存在するように、zの値を求めよ。 という問題なのですが、ABベクトル、ACベクトル、ADベクトルを求めるに当たって、点Aから各点を引いていたのですが、√の中に入れて二乗してそれらを足さなくてもいいのですか? 公式のAB=√(b1-a1)^2+(b2-a2)^2+(b3-a3)^2 を使わない理由が知りたいです。 ベクトルは学習したことがなく、独学中ですので、おかしなことをいっている部分もあると思いますので、全体的な解説を踏まえて教えてくださるとありがたいです。 宜しくお願い致します。 この空間ベクトルの問題を教えてください 座標空間に正四面体OABCがあり、O(0,0,0)、A(4,0,0) ベクトルBCはxy平面に垂直で、Bはy成分とx成分がともに正である点とする。 (1)点Bと点Cの座標を求めよ 空間でのベクトルの内積が分かりません 空間でのベクトルの内積が分かりません 「→(a)=(1,1,0),→(b)=(2,0,2)とする.→(a)と→(b)に垂直な単位ベクトル→(c)と→(a)と平行で大きさが2のベクトル→(d)を求めよ.」 という問題が分かりません. →(c)=(1/√3,-1/√3,-1/√3)または(-1/√3,1/√3,1/√3) →(d)=(√2,√2,0)または(-√2,-√2,0) だと思いました.合っていますか? 空間ベクトルなのですが・・・ 1. 3点、A(2,5,1)、B(0,3,7)、C(6,0,4)があ り、点Dを選び、四角形ABCDが平行四辺形にしたいのですが、 Dの座標をどのように設定したらいいのでしょうか? 2.次の三点が一直線上にあるように定数、a,bの値を定めよ。 (-3,2,-1)、(2,-5,3)、(a,b,-5) 3.aベクトル=(-2,-1,3)、bベクトル=(1,3,2) のとき、次の2式を同時に満たすベクトル、 xベクトル、yベクトルの成分を求めよ。 3x+y=a,7x+3y=b (ベクトル記号“→”は省略してます) ご回答の方、お願い致します。 **************** 4.平面ax+2y-z=6と次の方程式で あらわされる直線が平行となるように定数aの値を定めよ。 x=1-t,y=-1+5t,z=4+7t この問題については、自分、法線ベクトルを用いてやったら、できたのですが、なぜ、平行なのに、法線ベクトルを使うのでしょうか? よくわかりません、教えてください。 ベクトル空間 a = (2,2,3) b = (2,0,-4) c = (1,-2,1) でベクトルaが生成する1次元ベクトル空間を考え この空間へ上記ベクトルbを射影したベクトルb'を求めよ。 この問題での「ベクトルaが生成する1次元ベクトル空間」とはどういうことですか? 空間ベクトルあたりがいまいちピンとこないので、教えてくださると助かります。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 空間ベクトル ベクトル空間 空間ベクトル ベクトル空間 線形空間=ベクトル空間と認識しています。 テキストの内積空間の項目で空間ベクトルという表現がありました。 例えばベクトルaとベクトルbの内積はa・b=|a||b|cosθと表され、 これを空間ベクトルと表現しています。||は絶対値です。 空間ベクトルとは何なのでしょうか? ある集合内のベクトルの事を空間ベクトルと呼んでいるのでしょうか? ご回答よろしくお願い致します。 ベクトル空間 簡単にベクトル空間について説明するにはどうすればいいですか? 教科書に以下の8つの演算規則が載っていました。 a+b=b+a (a+b)+c=a+(b+c) a+0=0+a=a a+(-a)=(-a)+a=0 λμa=λ(μa) λ(a+b)=λa+λb (λ+μ)a=λa+μa 1a=a これら8つの規則が成り立つのがベクトル空間ということですか? 55 ベクトルの問題です!! 単位ベクトル?? ベクトル=a→=(2.1) b→=(-1,2)がある。x、yを正の実数とし、ベクトル3xa→+yb→は単位ベクトルで、かつベクトルxa→-2yb→に垂直であるとき、 x、yの値を求めよ。 この問題わかりません。 単位ベクトルに変換して、 垂直条件の公式を用いると思うのですけど、 式がつくれませんでした>_< 3xa→+yb→の式を成分aとbを代入すると。。 3x(2.1)+y(-1.2)ですか? そのあと、xa-2ybの式もつくり、 以上上の二つの式を最後は垂直の式にあてはめるのですか?? でも式がこれ以上進める事が(作る事が)できませんでした。 宜しくおねがいします! ベクトルがわからなくて困ってます(*_*) 短大の過去問なんですが 答えが無いので解けないままでいます(;´∩`) 解き方も一緒に教えていただけたら有難いです(>_<) 問 座標空間においてA(-1、2、-3)、B(2、4、-4)、C(-3、3、0)、D(x、y、4)を考える。 (1)B、C、Dが一直線上にある時のxとyの値は何か。 (2)ベクトルADがAB、ACの両方に垂直なときxとyの値は何か。 (3)cos∠BACを求めよ。 わかるとこだけでいいので お願いします(>_<) 数学の空間ベクトルの問題です 空間ベクトルの問題について 問題の答えがわかりません 問題をのせるので回答してもらえたらうれしいです。 空間ベクトル→a、→bのなす角をθ(0゜≦θ≦180゜)とするとき空間ベクトル内積→a、→bを次のように定める。 →a・→b=|→a||→b|cosθ →a=→0または→b=→0のときは→a・→b=0と定める。 1、基本ベクトル→e1=(1,0,0)、→e2=(0,1,0)→e3=(0,0,1)がある。次の内積を求めよ。 (1)→e1・→e2= (2)→e2・→e3= (3)→e1・→e1= です。 回答よろしくお願いします ベクトルの問題 普通の問題は解けるんですが、 この問題の解き方が分かりません。どなたか解説お願いします。 a=(1,1,0)b=(2,0,2)のとき、aに垂直な単位ベクトルを求めよ 空間ベクトル 空間ベクトル 点A(3,1,2)、B(1,2,1)とxy平面上に動点Pがある。このとき、AP+PBの最小値を求めよ。 という問題の解き方を教えていただきたいです。 解説よろしくお願いします。 数学Bベクトルの問題! 数学Bベクトルの問題! ・aベクトル=(-√3.1)と120゜の角をなし、大きさが2√10 であるベクトルxベクトル を求めよ。 ・aベクトル=(1.2)、bベクトル=(3.-2)とする。aベクトルとaベクトル+tbベクトルが垂直であるように、実数tの値を求めよ。 ・|aベクトル|=|bベクトル|=2、a・b=-3とする。aベクトル+bベクトルとaベクトル+tbベクトルが垂直であるように、実数tの値を求めよ。 ・|aベクトル|=4、|bベクトル|=5でaベクトルとbベクトルのなす角が60゜であるとき、ベクトル2a ベクトル-3bベクトルの大きさを求めよ。 です。お願いします☆ 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
返事が遅れて申し訳ございません。 まだ学校でもやってない範囲でして、内積ゼロに気づきませんでした…。 大変スッキリしています。 お二人とも、ご回答ありがとうございました。