• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:宇宙が無限であることの証明)

宇宙が無限であることの証明

このQ&Aのポイント
  • 背理法により宇宙が無限であることを証明する。
  • 仮に宇宙が有限であるとすると、適当な大きさの球体で宇宙全体を包み込むことができるが、その外側にも空間が存在するため、宇宙は有限ではない。
  • この証明により、宇宙の無限性が示される。

質問者が選んだベストアンサー

  • ベストアンサー
  • tak7171
  • ベストアンサー率40% (77/192)
回答No.12

私もalice_44様と同感に思います。 私には宇宙の有限無限はどうでもいいのですが、 質問者様の背理法には、当初提示された論中にはない、 「宇宙は万物である」という、「後付」で、 仮定を上げること自体を否定するような大前提を加えないと 結論が成立しない、という矛盾があると思います。 しかし質問者様がそれに納得できず、独自の証明を上げろというのでしたら 質問者様の真似で背理法をしてみましょう。 ここに宇宙αが存在する。 宇宙αは有限であると仮定する(1) (1)が正しければ、境界が存在する-(2)   ※境界が存在しなければ有限である証明が出来ず、(1)は否定される-(2*) (2)が正しければ、境界には外側が存在する-(3)  ※外側が存在しなければ(3)は否定され(2*)に戻る (3)が正しいとして、2つの仮定を提示する。    1.境界の外側は宇宙αと同じ要素で構成されている-(4)    2.境界の外側は宇宙αと異なる要素で構成されている-(5) (4)が正しければ、境界の内外の差別化が困難になり    境界は意味を失って(2)は否定され、それによって(1)も否定される。 (5)が正しければ、宇宙αを内包する、宇宙αとは異なる空間が存在することになる。    仮にこれを宇宙βとする。 仮定(1)を証明することによって宇宙βが生まれたが、 仮定(1)を宇宙βに当てはめると、宇宙γが生まれることになる。 さらに宇宙γに仮定(1)を当てはめ・・・と繰り返すと、 有限の宇宙を内包する別宇宙が無限に生まれることになる。 つまり宇宙の有限を証明することによって、 逆に無限を認めざるをえないパラドックスに陥る。 だから(1)は否定され、宇宙は無限である、という結論に達する。

g3452sgp
質問者

補足

うーむ、実に素晴らしい 今何度か読みなおしているが全く完璧であります。 12番目にしてやっと期待していた以上の回答を得ることが出来ました。 ねばった甲斐があったというものです。 またgoo事務局に消されんうちにコピー取っとかないといけませんね。 もうしばらく考えてみますが問題なさそうなので早速、数学基礎論の大御所(志賀浩二先生あたり)に見てもらわないと。 証明のタイトルは、「宇宙が無限であることの証明 - 有限宇宙のパラドックス」でよいでしょう。 有難うございます。  

その他の回答 (13)

  • titokani
  • ベストアンサー率19% (341/1726)
回答No.14

>宇宙は幾何学的には球のようなもの、つまり有限であるがつなぎ目がないと言いたいのであろう。 違うよ。

  • titokani
  • ベストアンサー率19% (341/1726)
回答No.13

>テニスボールを握ってみなさい。 >あなたは自分の手でテニスボールの表面の感触を確かめることができるはず。 >それが境界です。 それは、「球」の境界であり、イコール球の表面。 そうではなくて、「球の表面」に境界はない、という話です。

g3452sgp
質問者

お礼

  その話は実に単純である。 宇宙は幾何学的には球のようなもの、つまり有限であるがつなぎ目がないと言いたいのであろう。 ただし、それは同時につなぎ目がない閉じた構造であることを意味する。 このとき閉じた幾何学的構造は常に別の閉じた幾何学的構造によって包含することが出来るのである。 この問題は既に証明済みでなのです。 tak7171さんによるNo.12の証明をみるとよい。納得できるはずです。  

回答No.11

>宇宙の幾何学的構造がどうであれ長さはそれとは独立に常に存在します。 たしかに、長さは無限量であり、宇宙の構造とは関係なく自由に扱えると思います。 でもそれはあくまでも思考の中ではということではないでしょうか。 ですから、宇宙より大きな半径Rの球体G0をイメージすることは可能です。 しかし、実際にこの宇宙で長さというものを扱えるのは、 この宇宙が長さの概念を持っているからであり、 ほかの人が回答しているように、宇宙の外では長さが通用しないのに、 そこにまで長さの概念を持ち込むことは不可能です。いくらイメージはできたとしてもです。 つまり、 >有限であれば半径Rは確実に存在し、G0も存在する。 とのことですが、宇宙の外では長さの概念があるのかないのか分かりませんので、 宇宙が有限だとしてもG0の存在が示せない可能性があり、 この可能性を払拭しないかぎり(=宇宙の外でも長さを扱えることを示さないかぎり)、 これ以上この証明をすすめることはできないと思います。

g3452sgp
質問者

お礼

宇宙の外は存在しないのです。 その存在しないものを存在するとして話を進めるとあらゆる矛盾が生まれる。 それだけのことです。 その矛盾を示せばよいのです。   MandhelingさんにもNo.7と同様のお礼を述べたい。 もし宇宙が有限であると考えるのなら一つそれを証明してみてはどうだろう。 もし宇宙が無限であると考えるのならあなたのやり方で独自に証明(完成版)してみてはどうか。 そのほうが話が早いと思うので。 それをここで証明し披露したほうがよい。 私の証明に対し色々と回りくどい指摘を続けていくよりその方が余程ストレートでよいと思う。 どうですやってみませんか。 

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.10

現時点で、No.7 までの回答に質問者のコメントが付いているが、 No.1 と No.6 を飛ばしているのは、何の反論もすることができないから ということで ok?

g3452sgp
質問者

お礼

No.6での循環論法ではないかとの指摘はなかなか鋭い指摘と思うが循環はしていない。 宇宙の定義は明確であり、「宇宙は万物である」となる。 空間は万物の一つである。 従って任意の空間は宇宙であり,G1-G0は空間をなすので宇宙の一部である。 全て明確であり、循環はしていない。 alice_44さんにもNo.7と同様のお礼を述べたい。 もし宇宙が有限であると考えるのなら一つそれを証明してみてはどうだろう。 もし宇宙が無限であると考えるのならあなたのやり方で独自に証明(完成版)してみてはどうか。 そのほうが話が早いと思うので。 それをここで証明し披露したほうがよい。 私の証明に対し色々と回りくどい指摘を続けていくよりその方が余程ストレートでよいと思う。 どうですやってみませんか。

  • nananotanu
  • ベストアンサー率31% (714/2263)
回答No.9

#7です。 >もし宇宙が有限であると考えるのなら一つそれを証明してみてはどうだろう。 >そのほうが話が早いと思うが、違いますか。 いえ、ですから、私は貴方の味方です。有限である、とは一言も言っていません。ただ、自身の浅学の為「球面体(G1-G0)は球体G0の外部にあるがこれも空間を構成するのでやはり宇宙の一部である。なぜなら任意の空間は宇宙の部分であるからである。」が矛盾のように感じられ、理解できないので、是非、ご教授いただきたい、と先だってよりお願いいたしております。

g3452sgp
質問者

お礼

私は貴方の味方ですとは有り難いお言葉。 No.6のお礼を見て下さい。 ここでの証明は背理法ベースなので証明のどこかで必ず矛盾が登場します。 当然その矛盾を導き出すのが本証明の目的なわけです。 nananotanuさんは宇宙に対し無限のイメージを持っているのであればそのイメージを表現してみるとよい。 私の場合宇宙に対し強烈な無限のイメージがあります。宇宙は無限である以外には有り得ないと。 それを何としても証明しなければならないのです。    

  • isa-98
  • ベストアンサー率23% (205/859)
回答No.8

ちゃんと優しくすんだよ。 テニスボール「の裏側」を握ってみなさい。^○^ 協会があるからきっと握れるから。

  • nananotanu
  • ベストアンサー率31% (714/2263)
回答No.7

>テニスボールを握ってみなさい。 それは、半径方向の境界だと思います。 一方、#5さんが言われている境界は(ご理解できなかったかもしれませんが)表面に沿った方向の境界です。

g3452sgp
質問者

お礼

もし宇宙が有限であると考えるのなら一つそれを証明してみてはどうだろう。 そのほうが話が早いと思うが、違いますか。 それをここで証明し披露したほうがよい。 私の証明に対し色々と回りくどい指摘を続けていくよりその方が余程ストレートでよいと思う。 どうですやってみませんか。  

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.6

No.1 で論破されているじゃないの。 G0 の定義上、G0 より外は宇宙の外となる。 したがって、G1-G0 は、宇宙の内ではない。 そこを「空間を構成するので」で言い抜けるのは、 要するに、宇宙は無限と仮定したから宇宙は無限だ と言っているに過ぎない。 哲学方面の方は、 そのような「論証」を好むのかも知れないが、 数学を含む論理学の世間では、 循環論法には価値がない。

g3452sgp
質問者

お礼

G0 の定義上、G0 より外は宇宙の外となる。 したがって、G1-G0 は、宇宙の内ではない。・・・・(1) 一方、G1-G0 は空間である。 G1-G0 は空間であるから宇宙の内になければならない。・・・・(2) (1)、(2)は矛盾である。 これは宇宙が有限であるとした仮定から生まれる矛盾である。 つまり宇宙が有限であると仮定した瞬間に矛盾は生じたということです。 循環はしていない  

  • titokani
  • ベストアンサー率19% (341/1726)
回答No.5

それだと、「宇宙に境界はない」ことの証明にはなっても、「宇宙は有限ではない」ことの証明にはならないと思います。 球の表面は有限ですが、境界はありません。

g3452sgp
質問者

お礼

テニスボールを握ってみなさい。 あなたは自分の手でテニスボールの表面の感触を確かめることができるはず。 それが境界です。 どのようにごまかそうとしたところでごまかすことのできないもの、 それが宇宙の存在であり、その宇宙に対する我々の認識である。  

  • staratras
  • ベストアンサー率41% (1512/3682)
回答No.4

ご質問の「証明」にある「宇宙」や「有限」、「無限」はどう定義されているのでしょうか。 「証明」では「宇宙が有限である」と仮定しておきながら、「宇宙全体を包み込む球体」と「この球体よりさらに大きな球体」を考えています。「宇宙は有限である」と仮定するのであれば、「その宇宙(の内部)」が世界のすべてであって、「宇宙全体を包み込む球体」や「さらに大きな球体」の存在などそもそも考えられないのではないでしょうか。

g3452sgp
質問者

お礼

背理法とは前段の仮定の矛盾を導き出すことにあるので、 「宇宙は有限である」とする仮定は当然矛盾を含んでいなければならない。 一方、有限であれば半径Rは確実に存在し、G0も存在する。 つまり球体というものは如何なる半径のものであれ単独には存在するが、「宇宙全体を包み込む球体」は存在し得ない、そしてこれが「宇宙は有限である」とする仮定が生む矛盾である、 ということを言っているわけです。  

関連するQ&A