• ベストアンサー

二階線形常微分方程式の問題について教えてください。

二階線形常微分方程式の問題について教えてください。 y"+2y'+2y=0,y(0)=1,y'(0)=1 の解き方ですが、 λ1=-1+i,λ2=-1-i より a=-1,b=1 となりました。 一般解が y(t)=e^(at)(C1cos(bt)+C2sin(bt)) なので y(0)=C1=1 y'(t)=ae^(at)(-C1bsin(bt)+C2bcos(bt)) y'(0)=-C2=1 C2=-1 よって y(t)=e^(-t)(cost-sint) と解きましたが答えは y(t)=e^(-t)(cost+2sint) となっています。 どこが間違っているのか教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

y' が間違ってます. 計算し直してください.

fenghuang
質問者

お礼

回答ありがとうございます。 計算し直したら解けました^^;

関連するQ&A