ベストアンサー X^nをX^2-X-2で割ったときの余りっていくつですか? 2010/05/15 16:57 X^nをX^2-X-2で割ったときの余りっていくつですか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー aquatarku5 ベストアンサー率74% (143/193) 2010/05/15 17:06 回答No.1 整式を整式(x^2-x-2)=(x-2)(x+1)で割るので、商Q(x)、 余りR(x)とすると、R(x)は高々1次式になる。これを ax+bとおくと、 x^n=Q(x)(x^2-x-2)+(ax+b) x=2,x=-1を代入し、それぞれ 2^n=2a+b (-1)^n=-a+b これより、a,bを求めればよい。 質問者 お礼 2010/05/15 18:10 詳しい説明ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A x^nをx^2+x-2で割ったときの余り x^nをx^2+x-2で割ったときの余りを求めよ。 m nは正の整数とする。 という問題で、その前の問題で、 x^(3m) + 1を X^3で割ったあまりを求めていて それが x^(3m) + 1=(x^3-1)(xの整式)+2 =(X-1)(X^2+X+1)Q(X)+2・・・(1) (Q(X)はXの整式)でした。 解答では、この式利用して、 x^nのnをn=3m 、3m+1 、3m+2、 の時で場合わけをしていて、(1)の式を変形してそれぞれの余りを求めていました。 この場合わけはいったいどこからきたのでしょうか? 別の問題なのですが、 整式x^nをx^5-1で割った余りを求める問題で(nは自然数) 二項定理による変形で n=5m+rとして m=0,2,3,・・・・ r=0,1,2,3,4,5 として x^5-1=(x^5-1)(xの整式)+x^r と変形して、r=1~4の時は余りは r^5 r=5 のときは1 として求めていたんですが、今回の問題も同じように nをn=3m 、3m+1 、3m+2ではなくn=3m+r と変形して求めたりはしないのでしょうか? x^100を(x+1)^2で割ったときの余りを求めよ。 x^100を(x+1)^2で割ったときの余りを求めよ。 この問題の解法は1つは、2項定理を用いる方法で x^100=(x+1-1)^100と考える。 2つめは、余りをax+bとおいて、微分する方法。 3つ目の方法があったら教えてください。 よろしくお願いします。 24n+1を7で割った余り 皆さんこんにちは。私は22歳の大学生です。 24n+1 n;自然数 これを7で割ったときの余りを式で出したいんですが、可能でしょうか? どうかわかる方、助けて頂けると嬉しいです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム x³+1で割ると余りが2x+3であり、x² +x+ x³+1で割ると余りが2x+3であり、x² +x+1で割ると余りが3x+5である3次式を求めよ。 という問なのですが、画像のように、商をax+b, cx+d のような形でおくのはなぜですか? yなどではだめなのですか? x^n+1をx^2+x+1で割った余りをどう求めるか教えてください。 x^n+1をx^2+x+1で割った余りをどう求めるか教えてください。 x^n-1を(x-1)^2で割った時の余り x^n-1を(x-1)^2で割った時の余りを求めよという問題があります。 nは2以上の整数とします。 (ちなみに、「xのn-1乗」ではなく、「xのn乗-1」です。) この問題は、まずx^n-1を(x-1)^2で割った時の商をQ(x)、余りをsx+tとおいて、 x^n-1=(x-1)^2Q(x)+sx+t―(1) という等式を作ります。 そして、両辺にx=1を代入して0=s+t、変形してt=-sという式を得ます。―(A) これを(1)に代入し(文字を減らし)、次に x^n-1=(x-1)(x^n-1+x^n-2+…+1) であることを利用して(1)との組合せで解くのですが、腑に落ちない点があります。 上記の(A)でxに1を代入してtとsの関係式を求めていますが、なぜt=-sを(1)の式に代入できるのでしょうか? 何が言いたいかといいますと、 「t=-sはx=1の時だけ成り立つのでは?この解答を読んでいると全てのxにおいてt=-sが成り立つかのように見えてしまう」 ということです。 ものすごく初歩的なことを訊いているような、数学の大前提を理解していないような気がして怖いのですが・・・気になっています。 よろしくお願いします。 整式P(x)を(x-1)(x+2)で割ったときの余りが7x、x-3で割 整式P(x)を(x-1)(x+2)で割ったときの余りが7x、x-3で割ったときの余りが1のとき、P(x)を(x-1)(x+2)(x-3)で割ったときの余りを求めよ。 解答 『P(x)を(x-1)(x+2)で割ると余りが7xであるから、 P(x)=(x-1)(x+2)(x-3)Q(x)+a(x-1)(x+2)+7x』 ・・・(1) と表せる。 (計算省略) よって、求める余りは、-2x^2+5x+4 質問は、『 』のところです。なぜ、このような式になったのか、特に、どうしてa(x-1)(x+2)+7 のような式が出てくるのか、理解できません。 教えてください。よろしくお願いします。 x[1]・x[2]・…・x[n]=1 ならば x[1] + x[2] + … + x[n] ≧ n x[k]>0 (k=1,2,…,n)とする。 このとき、 x[1]・x[2]・…・x[n]=1 ならば x[1] + x[2] + … + x[n] ≧ n と予想しましたが、証明できるのでしょうか? また、 x[1] + x[2] + … + x[n] = 1 とすると、x[1]・x[2]・…・x[n] に関する何らかの不等式はあるのでしょうか? 余りを求める問題ができません・・・ えっと、多分数IIの範囲なんですが、 xの整式f(x)をx^2+1で割ったら余りがx+3、x^2+2で割ったら余りが、2x-1であった。f(x)を(x^2+1)(x^2+2)…(※)で割った時の余りは? という問で、解答にf(x)を(※)で割ったときの商をq(x),余りをr(x)としf(x)=(※)q(x)r(x)…((1))とすると(1)において(※)q(x)はx^2+1,x^2+2の両方で割り切れるから『f(x)をx^2+1,x^2+2で割った余りはそれぞれr(x)をx^2+1,x^2+2で割った余りに等しい』とあるんです。 僕はここの『』のところがよく理解できないんです…。教えてください!!(分かりにくい説明でごめんなさい。。) 数学の質問です。 整式x5-1をx2-2x-3で割ったときの余りを(剰 数学の質問です。 整式x5-1をx2-2x-3で割ったときの余りを(剰余の定理を用いて)求めよ。と言う問題の解き方を教えていただけますか。 余りの求め方 f(x)は整式で、(x-2)で割った余りは3,(x+2)^2で割った余りは-xである。 f(x)を{(x+2)^2}(x-2)で割った余りを求めたいのですが、 f(2)=3 f(-2)=-x=2 である。また、商をQ(x)とすると、実数s,t,uを用いて f(x)={(x+2)^2}(x-2)Q(x)+sx^2+tx+u て表せる。よって、 f(2)=3=4s+2t+u f(-2)=2=4s-2t+u となるところまで導いたところで行き詰まってしまいました。 2つしか式を立てられなかったので、この連立方程式は解けませんよね? ここからどうすれば良いのでしょうか?よろしくお願いします。 あと気になったのですが、正しい解答方法とは全然関係ないと思うのですが、 ここで(x+2)^2を複素数の範囲で因数分解して3つ連立して式を作っても、最終的には解けるのでしょうか? 余りの求め方が分かりません 3次の整式f(x)を(x^2-x+1)で割った余りは(x-3)、f(-1)=5のとき、f(x)を(x^3+1)で割った余りを求めたいのですが、 f(x)=(x^2-x+1)g(x)+x-3 ←g(x)は1次の整式 f(-1)=3g(-1)-4=5 よって g(-1)=3 f(x)=a(x^3+1)+h(x) ←g(x)は2次の整式 =a(x+1)(x^2-x+1)+h(x) となるところまでは解いてみたのですが、これからどうやって答えを導けばよいのか分かりません。 ここからどうすればよいのでしょうか? 解き方の分かる方、教えて下さい。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム [問] h(x)=x^25-x^13+5とする時、(x-1)^2で割った時の余りを求めよ。 [問] h(x)=x^25-x^13+5とする時、(x-1)^2で割った時の余りを求めよ。 [解] (x-1)^2とx-1で割った余りを夫々ax+b、rと置くと、 h(x)=(x-1)^2Q(x)+ax+b=(x-1)Q'(x)+rと表せ、 h(1)=5なので、a+b=r=5とは置ける事は分かりますがこれからどうするのでしょうか? 答えはMapleで解いたら12x-7と出ました。 等式P(x)をx^2+x-6およびx^2-x-2で割った余りがそれぞれ 等式P(x)をx^2+x-6およびx^2-x-2で割った余りがそれぞれ4x+5およびax+1であるとする。ただし、aは定数。 問、aの値を求めよ。 P(x)=(x^2+x-6)Q1(x)+4x+5 P(x)=(x^2-x-2)Q2(x)+ax+1 この2式を立てた後、どう計算すればよいかわかりません。 教えてください。お願いします! 割り算の余りは・・・ 割り算の余りを求める問題 「xは整数とする。 (x^2+x+1)^1234 を x^3+x^2+x+1 で割った余りを求めよ」 一体何を計算すれば良いのかさっぱり分かりません。因数分解も試みたのですがまるっきり駄目でした。 誰かこの問題を解くカギを教えてください! 割り算の余りについて 僕は、中学三年生です。 割り算の余りについて質問をします。 例えば、21nを41で割るとします(1≦n≦41)。 もちろん余りの範囲は、0~40ですよね。 ここで疑問なことが、なぜ余りが一回ずつ出てくるのか ということです。 分かる方がいましたら、ぜひ教えてください。 よろしくお願いします。 Σ{n=0~∞} ((x^2^n)/(1-x^(2 Σ{n=0~∞} ((x^2^n)/(1-x^2^(n+1)) ただし-1<x<1 を求めよという問題なのですが (x^2^n)/(1-x^(2n+1) =(1/(1-x^2^n)-1/(1+x^2^n))/2 とぶんかいできるので Σ{n=0~∞} (1/(1-x^2^n)-1/(1+x^2^n))/2 と置き換えられる 1/(1-x^2^n)=1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1)) とも置き換えられるので Σ{n=0~∞} (1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1)) -1/(1+x^2^n))/2 1/(1+x^2^(n-1)) -1/(1+x^2^n)はn=0~∞なので0 (ここが自信ないです) Σ{n=0~∞} (1/(1-x^2^(n-1)) は発散する ( 1/(1-x^2^(n-1)>1 なので) 間違えてるところがあったら指摘お願いします P(x)を(x-1)2乗(x+2)で割った時の余り。 P(x)を(x-1)2乗(x+2)で割った時の余り。 という問題なのですが、P(x)=R(x)(x-1)2乗(x+2)+Ax2乗+Bx+Cと置いて解くなら分かるのですが、 P(x)=R(x)(x-1)2乗(x+2)+A(x-1)2乗+4x-5とおくのが分かりません。 教えてください。 (1)1/(1-x-x^2)=Σ(n=0~∞)a_n(x^n)に対して (1)1/(1-x-x^2)=Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 (2)(2-x)/(1-x-x^2)Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 (3)(x^2)/(1-x-x^2-x^3)Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 できるだけ、詳しく教えてください。お願いします。 Σ{n=0~∞} (x^n)((x-1)^2... Σ{n=0~∞} (x^n)((x-1)^2n) /n! …(1) ってどういう風に考えたら e^x(x-1)^2とおけるのでしょうか? テーラー展開の考え方を使うというのはわかるのですが e^x(x-1)^2ってテーラー展開したら Σ{n=0~∞} (x^n)((x-1)^2n) /n! なりますか? テーラー展開は最近知ったばかりでよくわかりませんが、 f(x)=f(a)+f'(a)x/1!+f''(a)(x^2)/2!+f'''(a)(x^3)/3!+... …(2) という式はしってます。 (証明とかはわかりませんが、基本的なsinxとかのテーラー展開はできます) よくわからないのが、(1)式だと、分母がn!のときに分子のxが3n乗になってしまうのがよくわかりません。(2)式のとおり行く分母がn!のときに分子のxがn乗以外にはならない気がするのですが。。。 それともこれはF(x(x-1))=e^x(x-1)^2としてΣ{n=0~∞} ((x(x-1)^2)^n) /n!と考えるのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
詳しい説明ありがとうございました。