- ベストアンサー
a+b+c=(1/a)+(1/b)+(1/c)=(1/ab)+(1/bc)+(1/ca)
a+b+c=(1/a)+(1/b)+(1/c)=(1/ab)+(1/bc)+(1/ca) が成立するとき、a,b,cのいずれかは1に等しいことを証明する問題です。 上記の式から、abc=1, a+b+c=ab+bc+caがいえると思うので (x-a)(x-b)(x-c)=0を考えて、 x^3-(a+b+c)x^2+(ab+bc+ca)x-abc=0 すなわち x^3-(a+b+c)x^2+( a+b+c)x-1=0 この式はx=1で成立するので、(x-a)(x-b)(x-c)=0に x=1を代入して (1-a)(1-b)(1-c)=0 この式が成立するためには、a,b,cのいずれかが1に等しくなければならない、と解きました。この解きかたでよろしいでしょうか。
- みんなの回答 (7)
- 専門家の回答
お礼
詳しい説明をありがとうございました。