- ベストアンサー
△ABCの外心をO、内心をIとする。
△ABCの外心をO、内心をIとする。 (1)OとIが一致すれば、△ABCは正三角形であることを証明せよ。 (2)OとIが一致しないとき、AIの延長と△ABCの外接円の交点をDとする。このとき、OD⊥BCであることを証明せよ。 頑張ったのですが、解けません。 お力を貸していただけませんか? よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
△ABCの外心をO、内心をIとする。 (1)OとIが一致すれば、△ABCは正三角形であることを証明せよ。 (2)OとIが一致しないとき、AIの延長と△ABCの外接円の交点をDとする。このとき、OD⊥BCであることを証明せよ。 頑張ったのですが、解けません。 お力を貸していただけませんか? よろしくお願いします。
お礼
丁寧なお返事有難うございました。 (1)は、理解できました。 (2)を解いていますが、どうしても証明できません。 もう一度定義を理解してみます。