ベストアンサー テーラー展開を求めよ。 2010/01/27 12:34 次のテーラー展開を求められません。。 1/(1+x^2) Tan^-1x よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー proto ベストアンサー率47% (366/775) 2010/01/27 13:30 回答No.1 1/(1+t)のテイラー展開を求めてからt=x^2を代入しましょう。 質問者 お礼 2010/01/28 02:42 出来ました!!あと上の問題からTan^-1も解くことができますよね? ありがとうございました!! 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A テイラー展開 テイラー展開 この問題の解き方と答えが合っているかどうか教えてください。 また、間違っていた場合、間違っている箇所の解き方を教えていただけると嬉しいです。 次の関数のf(x)の与えられた点のまわりでの3次のテイラー展開を求めよ。 テイラー展開 テイラー展開 この問題の解き方と答えが合っているかどうか教えてください。 また、間違っていた場合、間違っている箇所の解き方を教えていただけると嬉しいです。 次の関数のf(x)の与えられた点のまわりでの3次のテイラー展開を求めよ。 よろしくお願いします。 テイラー展開 次の関数のテイラー展開を3次の項まで求めよという問題 sin(x+y) これの解き方がわかりません。 一変数関数のときのテイラー展開は暗記して覚えたんでなんとかなったんですが… よろしくおねがいします。 テイラー展開 テイラー展開 次の問題の解き方を教えてください。 f(x)=arctan xに対して、次の問いに答えよ。 (1)f(x)の2次のマクローリン展開を求めよ。 途中まで一応解いてみたのですが、ここまでも合っているか分かりません(汗) テイラー展開に関する問題 tan(tanx)のx=0を中心とするテイラー展開を示せ。ただしxについて5次以上の項をR₅と書いてよい。 上記の解き方がわかりません。数学が苦手な私にも理解できるような説明をよろしくお願いします。 テイラー展開について ふと疑問におもったのですが、偶関数のテイラー展開は、変数xの偶数乗のべきで級数展開できましたっけ? あと、|x|( ||は絶対値 )はテイラー展開できますか? テイラー展開 数学についての質問です。 解説お願いします。 問:次の関数の与えられた点のまわりでの、3次までのテイラー展開を求めよ。 (1)2/(x+1) (x=0) (2)sinx +cosx(x=π/3) (3)e^-x (x=1) 問:f(x)=arctanxについて以下の問いに答えよ。 (1)f(x)の、x=0のまわりの2次までのテイラー展開を求めよ。 (2)lim(x→0)arctanx-x/x^3 を求めよ。 テーラー展開 f(x)=x^2-x+1について、x0(中心点)を5としてテイラー展開しなさいという問題です。 筆算の場合のテーラー展開はやったんですが微分できる回数が決まってる式の展開というのが分かりません。 途中の式を教えてください。お願いします。 テーラー展開について テーラー展開について f(x)=exp(1/x)(x>0),0(x≦0) (1)x=0のとき、C∞であることを確認せよ。 (2)f(x)がx=0のまわりでテーラー展開不可能であることの証明 テイラー展開 テイラー展開 教科書に「n=3として、f(x)=sinxのx=π/4におけるテイラー展開を求めよ。」という問題があります。 f(x)=sinxは無限回微分可能。 n=3 a=π/4 としてテイラー展開を行う。 n=3なので、テイラーの定理に(n+1)乗まで、a=π/4を当てはめればいい。 そして、f(x)、f'(x)、f''(x)…と、(n+1)回微分まで求めて、求めた値f(π/4)、f'(π/4)、f''(π/4)…をテイラーの定理に代入する。 講義のルーズリーフをなくしてしまい、記憶で解いていたのですが果たして考え方が合っているのか不安です。これでいいんですよね? テイラー展開について {1+(2bx+x^2/a^2+b^2)}^(-3/2) このような式をx=0のまわりでテイラー展開した場合 どのような計算過程になるのでしょうか? f(x)=上式、x=2bx+x^2/a^2+b^2 と置いて展開すればいいのでしょうか・・・ テイラー展開というものをよく分かっていません。 ご教授よろしくお願いします。 テイラー展開の問題です。 次の問題が分かりませんでした。 (1+x)^(-1/x)のx=0に関するテイラー展開をxの2次の項まで求めよ。 よろしくお願いします。 テーラー展開について テーラー展開を用いて指数関数を多項式にしたいのですが、 f(x) = EXP(x) = 1 + 1 / 1! * x + 1 / 2! * x^2 + … というのは理解しているのですが f(x,y) = EXP(x + y)といった2変数の場合のテーラー展開やり方がわかりません。 一体どうのようにすればいいのでしょうか? テイラー展開 この問題の解き方と答えが合っているかどうか教えてください。 また、間違っていた場合、間違っている箇所の解き方を教えていただけると嬉しいです。 次の関数のf(x)の与えられた点のまわりでの3次のテイラー展開を求めよ。 テイラー展開 f(x,y) = 3x^2+4xy-5y^2の(1,-2)のまわりでの2次のテイラー展開を求める問題なのですが テイラー展開は f(x,y) = f(1,-2) + (fx(1,-2)x + fy(1,-2)y)+1/2(fxx(1,-2)x^2 + 2fxx(1,-2)xy + fyy(1,-2)y^2) + R3 でいいのでしょうか? これから第二近似を行うと fxxx = fyyy = 0であるからR3=0 つまり、 f(1,-2) = -25 - 2x -4y + 3x^2 -5y^2 + 4xy これでいいのでしょうか? もしかしたら2変数におけるテイラー展開を誤って学習してしまったかもしれないので。 テーラー展開で数値を求めたいのですが・・・ cos0.1の値を少数第5位まで求めたいのですが、 cosxをx=0.1でテーラー展開するのか、 それともcos(0.1x)をx=1でテーラー展開すればいいのか、 もっと簡単な方法があるのか… また、これからこういったテーラー展開で数値を求める問題に取り組む時、どの関数をテーラー展開すればより簡単に求まるかを見分つけるほうほうがあれば教えて下さい!!お願いします。 テイラー展開 f(x)=1/(√(1+x)) (x>-1)のx=0におけるテイラー展開ってどうやればいいですか? テイラー展開について教えてください。 テイラー展開に関する問題です テイ ラー展開に関する問題です。 (1)以下の関数のx=0を中心としたテイ ラー展開をし、一般項を書け。 (i)cosx (ii)1/(1-x) (2)x=0を中心とした1/(2-x^2)のテイラ ー展開をし、一般項を書け。 (3)x=0を中心とした(cosx)/(2-x^2)のテ イラー展開をx^6の項まで求めよ。 (4)lim[x→0](1/x^4){(cosx/(2-x^2))-(1/2)}を求めよ。 以上です。 自分でも求めたのですが、あってい るかが分かりません。 確認お願いします。 (1)(i)cox=Σ[n=0→∞]((-1)^n)(x^(2n))/(2 n)! (ii)Σ[n=0→∞]x^n (2)1/(2-x^2)のテイラー展開は自信が ないのですが、これをテイラー展開 の式に代入して求めていくとすごく 時間がかかるので、 1/(2-x^2)=(1/2){1/(1-(x^2/2))}と変形し 、(1)の(ii)と同じようにして、Σ[n=0→ ∞](1/2)(x^2/2)^nとなりました。 果たして、これでいいのでしょうか ? (3)たぶんこれは(1)と(2)の結果を使え ということだと思うのですが、これ は(cosx)と1/(2-x^2)のそれぞれの項を かければいいだけですか? たとえば、1項は、cosxの1項目の1 と、1/(2-x^2)の1項目の1/2をかけて 、1/2となるのでしょうか? (4)これはちょっと分からないです。1 /x^4がかかっているので、テイラー 展開したものでも分母にxの項が入っ てしまい、発散しそな気がしたので すが、そんなはずはないので、よくわからないです 回答よろしくお願いします。 解析学(テーラー展開等)の問題です。 解析学(テーラー展開等)の問題です。 よろしくお願いします。 f(x)=1/√(x+1)のx=0のまわりのテーラー展開をx^3の項まで求めよ。 x=0のまわりのテーラー展開を用いて、次の極限値を求めよ。 lim(x→0){(sinx-x)/(e^x-1-x-(x^2/2))} ロピタルの定理を用いて、次の極限値を求めよ。 lim(x→0){(e^x+e^(-x)-2)/x^2} よろしくお願いします。 テイラー展開を含む極限の問題 テイラー展開を含む極限について教えて下さい。次の問題の解説をお願いします。 テイラー展開を利用して、以下の極限値を求めなさい。 (1)lim(x→0)[{1-(1/2)x^2-cos(x)}/x^4] (2)lim(x→0)[{sin(x)-(x-(1/3!)x^3)}/x^5] テイラー展開を使えば5秒で解けると言われたのですが、どうなのでしょうか。結果だけでなく、途中経過もお願いします。 よろしくお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
出来ました!!あと上の問題からTan^-1も解くことができますよね? ありがとうございました!!