- 締切済み
product spaceを用いた確率過程の期待値の極限
測度論的確率論にお詳しい方,以下の質問に答えていただけると幸いです. [定義] 1. (Z,Θ): measurable space. Θはσ-algebra. 2. Z^∞=Z×Z×Z×... (Zの直積を可算無限回とった集合) 3. 以下の形をした集合Bは``finite measurable rectangle'': B=A_1×A_2×...×A_T×Z×Z×..., ここで,A_t∈Θ for all t=1,2,...,T. T∈N 4. Φ^T: Tを所与としたとき,全てのfinite measurable rectangleを含む集合族. 5. Φ: 全てのfinite measurable rectangleを含む集合族. 6. Ψ^T: Φ_Tの要素の任意の有限個の組み合わせのunionを全て含む集合族. 7. Ψ: Φの要素の任意の有限個の組み合わせのunionを全て含む集合族. 7. Θ^T: σ-algebra generated by Ψ^T 6. Θ^∞: σ-algebra generated by Ψ 7. μ^∞:Θ^∞→[0,1]: Θ^∞上に定義された確率測度.ただし, これはΦ上で定義された確率測度をΨ上のそれへと拡張し,さらに それをΘ^∞上に拡張して導出されたものとする. 8. ξ_t:Z^∞→Z:以下で定義されるmeasurable function ξ_t(z_1,z_2,...)=z_t , t∈N [Remark] a. 自然数の集合Nは要素として∞を含まないので,T<∞. b. Ψ^T,Ψはalgebraである. c. 7.の例として,transition functionを使ってマルコフ過程を定義したものがある. [確率過程] このとき, Θ^1⊂Θ^2⊂Θ^3⊂... となり,かつ,ξ_tはΘ^t-measurable functionなので,({Θ^t}_t,(Z,Θ),{ξ_t}_t) のセットは(Z^∞,Θ^∞,μ^∞)上に定義された確率過程となる. [質問] ようやく質問です. 今,Zがある有界な閉区間だとして,確率変数ξ_tの期待値がうまく定義できるとします. このとき,定義から,Mが有限であればE(ξ_M)が定義できます. では,lim_{M→∞}E(ξ_M)についてはどうでしょうか? 自分としては,定義されないと考えています.というのも,lim_{T→∞}Ψ^Tは 補集合について閉じていないのでalgebraでなくなります.したがって,拡張定理を 使えなくなって確率測度μ^∞がそもそも定義できなくなってしまうからです. このロジックは正しいでしょうか? では,lim_{M→∞}ρ^M E(ξ_M),0<ρ<1,についてはどうでしょうか? E(ξ_M)自体は定義されないけど,仮にE(ξ_M)が存在しても,0に収束するのだから 「lim_{M→∞}ρ^M E(ξ_M)は定義される」と言っても問題ない,考えていますがいかがでしょうか? 長くなってしまいましたが,お聞きしたいのはこの2点です.数学の 勉強をして少しずつ慣れてきたものの,まだ自分の結論に確信をもてる ほどのレベルには至っておりません^^;宜しければ数学に強い方の ご意見をきればと思います.どうぞよろしくお願いします.
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- rabbit_cat
- ベストアンサー率40% (829/2062)
- rabbit_cat
- ベストアンサー率40% (829/2062)
お礼
返事が遅れてしまって大変申し訳ありません。 ご回答ありがとうございます。 要約理解することができました。どうもありがとうございます!